- 
                                
                        
                         - News
 -  Books
                        
Featured Books
- smt007 Magazine
 Latest Issues
Current Issue
                                                                                                        Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
                                                                                                        Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
                                                                                                        Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
 - Columns
 - Links
 - Media kit
 ||| MENU - smt007 Magazine
 
Real Time with… SMTAI 2020: Technical Conference Review
October 6, 2020 | Real Time with...SMTAIEstimated reading time: 16 minutes
Lars Boettcher, Fraunhofer IZM Berlin 
#653: PCB Embedding Technology for 5G MIMO Antenna Modules
The rollout of 5G networks has already started worldwide. In the near future, it is expected to dramatically reshape the wireless communication implementation landscape. Nevertheless, a number of technical challenges still need to be addressed in the most recent packaging development approaches, such as the implementation of a large number of connections at high data rates exhibiting high gain to compensate for the high free space loss at millimeter-wave frequencies.
Within the European funded project SERENA, partners from academia, research, and industry are collaborating to address these topics and develop an integration platform, based on PCB embedding technology, capable of reducing size, power consumption, and design time and complexity, while at the also achieving increased performance, energy efficiency, and transmitted output power.
In particular, PCB embedding technology offers the potential to realize an integrated RF electronics module containing ICs for RF signal generation and antennas with very short interconnects in a single package, minimizing the signal path losses. In the framework of the SERENA project, new RF materials suitable for the embedding of components are applied in combination with high-gain GaN and SiGe dies for the first time to implement a scalable SiP operating at 39 GHz.
Different concepts for the realization of RF modules with embedded GaN and SiGe dies are outlined, and first demonstrators are currently being fabricated at Fraunhofer IZM to develop a process technology which allows using RF laminate and prepreg materials to embed the dies for modularization and handle non-standard die pad metallization, such as 3-micron Au pads, within the embedding process sequence.
Test structures were also fabricated for the electrical assessment of the package configuration and the applied technology tested. Specifically, package interconnects, and integrated patch antenna arrays were designed, simulated with the aid of a 3D full-wave simulator, and measured after fabrication. It was shown that the interconnects realized in the PCB embedding technology have good RF properties in terms of insertion loss and return loss and are well suited for SiP RF modules. The antennas also exhibit good radiation characteristics in terms of gain and efficiency.
Figure 16: The motivation for embedding for RF applications.
Figure 17: Chip embedding process.
Sean Fleuriel, MacDermid Alpha Electronic Solutions 
#654: PIT Resistant Acid Copper Electroplating Process for Flash Etching Flash Etching, V-Pit, Pitting, Via Fill, Through-Hole, Pattern Plating, Metallization 
The challenges of rapidly changing products and applications for electronics continually push the requirements for IC substrates and PCBs. The industry responds with technologies, such as HDI, semi-additive processing (SAP), and modified SAP (mSAP), to meet the requirements of tomorrow. These technologies help maximize PCB real-estate usage by allowing fabricators and designers to perform multilayer buildup.
During this process, multiple metallization and etching steps are required to achieve the desired designs. With an increasing number of layers, the chance for critical defects to occur increases. Hence, a great deal of attention has been paid to the Cu deposit and how it reacts to subsequent etching processes.
Higher technologies may require many etching steps. Variations in the etching rate across the surface can result in pits forming. These defects cause severe reliability issues in the final product. Fabricators are currently trying to resolve these issues by baking the plated panels for several hours, which increases the process cost and negatively affects production output.
Therefore, innovative Cu electroplating solutions are required to produce Cu deposits that etch consistently. The purpose of this study was to investigate the underlying mechanism of pitting and to develop an innovative process to reduce pit formation. The electrolytic process also needed to be robust enough to perform consistently in large scale production.
Figure 18: Etching steps can lead to V-pit formation. Pits can cause failures in finished products.Page 5 of 7
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.