-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Alternatives to Simulation
April 23, 2021 | Dan Beeker, NXP SemiconductorsEstimated reading time: 2 minutes

We are living in an age where the demands on electronic product designs are constantly evolving. The IC technology and operating speeds continue to pose significant challenges for teams as they work to develop their products. The increased transistor switching speeds and less forgiving compliance standards make signal integrity and electro-magnetic compliance more difficult to achieve. The status quo seems to have become, “We expect to fail EMC testing.”
What can be done to increase the likelihood of compliance, and proper function? In some cases, the engineering community looks to simulation as a method of evaluating the PCB design. There are certainly a number of powerful tools available, but they are usually expensive and difficult to use properly. These tools are only of value if the transmission lines are not broken. The simulated results often differ from the measured behaviors, forcing model tweaks and lost time. In most cases, you have an incomplete model and inaccurate measurements, which even when reconciled, do not reflect the real behaviors of the design. It is nearly impossible to get good measurements for this purpose. The probes will affect the signal, as does the location in the transmission line where the measurement is taken. Many teams just do not have the bandwidth or expertise to achieve success using this process.
The fundamental issue is that most simulation tools are not capable of evaluating broken transmission lines. (I say “most” because I am not intimately familiar with all of them.) A broken transmission line is a signal or power conductor that is not one dielectric away from ground. If a signal or power conductor is not directly adjacent to a continuous dielectric bounded by a continuous ground conductor, the EM fields do not stay where the design requires. The field will fill the space between the signal conductor and the ground conductor that connects to the power source for the PCB.
The more conductors and dielectrics that are between the signal in question and its ground, the more impact on signal integrity and EMC. There are just not enough nodes in the models. It would require characterizing every change in the transmission line geometry, for not only the signal trace in question, but the other nearby traces and the power supplies for the ICs involved. Once a trace crosses a split in the ground plane, the space involved in the signal transmission expands to include the divergent path of the continuous ground conductor. This increases the time it takes to establish the signal voltage, requiring more wave cycles to achieve the signal levels. Each wave cycle increases crosstalk and possible radiated emissions, which occur at every wavefront. Every other signal crossing the split will also have an expanded space to fill. These signals will then share the space and affect the voltage for each signal. If a power supply is not properly designed, signal integrity is compromised for all the signals using that supply. If a signal is compromised, it affects not only that signal, but other signals in the adjacent areas of the PCB.
To read this entire article, which appeared in the April 2021 issue of Design007 Magazine, click here.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.