-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
DFM 101: PCB Via Structures
November 2, 2021 | Anaya Vardya, American Standard CircuitsEstimated reading time: 3 minutes
One of the biggest challenges facing PCB designers is not understanding the cost drivers in the PCB manufacturing process. This article is the latest in a series that will discuss these cost drivers (from the PCB manufacturer’s perspective) and the design decisions that will impact product reliability.
DFM
Design for manufacturing (DFM) is defined as the practice of designing printed circuit boards that meet not only the capabilities of the customer’s assembly manufacturing process, but also the capabilities of the board fabrication process at the lowest possible cost. While not a substitute for early design engagement with the PCB fabricator, these articles will provide guidelines that will help to “design for success.”
Microvias
One of the most important technological advancements that made HDI viable was development of the microvia: a very small hole (typically 0.006” or smaller) that only connects certain layers either as “blind” or “buried” via holes. This represents a totally new way of making electrical connections between layers on a PCB. Traditional PCB technology has utilized “through-holes,” which by definition, are drilled through the entire PCB connecting the two outside layers with all of the internal layers. The ability to strategically connect only certain pads on certain layers greatly reduces the real estate needed for a PCB design and allows a much greater density in a smaller footprint. Figure 1 shows through-holes and buried and blind vias.
Figure 1: Microvias vs. through-hole vias. (Image credit: NCAB Group)
Types of Microvias
- Blind via: Used to connect one surface layer with at least one internal layer
- Buried via: Used to create connections of internal layers with no contact to the surface layers
- Via-in-pad: A type of blind via in which the via hole is drilled in a surface mount pad, eliminating the need to run a trace and via pad from each SMT pad
- Filled vias: Completely filling the microvia with either a non-conductive or conductive paste. Conductive fill is typically used for heat dissipation and non-conductive fill is used to closely match the thermal expansion of the substrate.
Microvia Formation
Microvias can be formed through a number of methods, primarily mechanical drilling, laser drilling and sequential lamination.
- Mechanical drilling: Uses traditional drilling equipment to mechanically form holes, but typically limited to 0.006” diameter and dependent on the depth needed
- Laser drilling: Special drilling equipment that utilizes a laser to form the hole and can go down to 0.001” in diameter
- Sequential lamination: A process where the microvias are drilled all the way through a sub-panel of the layers that need to be connected by the via, which could require multiple lamination, plating, filling and planarization operations (Figure 2).
Figure 2: Sequential lamination. (Source: Siemens EDA)
Stacked vs. Staggered Microvias
- Stacked: Microvias that are electrically connected and literally stacked vertically on top of each other through various layers of the PCB
- Staggered: Microvias that are electrically connected and offset to one another through various layers of the PCB (Figure 3)
Figure 3: Staggered and stacked microvias.
Via-in-Pad Microvias
The via-in-pad production process allows you to place vias in the surface of the flat lands on your PCB by plating the via, filling it with one of the various fill types, capping it and, finally, plating over it. Via-in-pad is typically a 10- to 12-step process that requires specialized equipment and skilled technicians. Via-in-pad is often an optimum choice for HDI PCBs because it can simplify thermal management, reduce space requirements, and provide one of the shortest ways to bypass capacitors for high-frequency designs (Figure 4).
Figure 4: Via-in-pad.
Understanding the cost drivers in PCB fabrication and early engagement between the designer and the fabricator are crucial elements that lead to cost-effective design success. Following your fabricator’s DFM guidelines is the first place to start.
This article originally appeared in the October 2021 issue of Design007 Magazine.
Anaya Vardya is president and CEO of American Standard Circuits; co-author of The Printed Circuit Designer’s Guide to…Fundamentals of RF/Microwave PCBs and Flex and Rigid-Flex Fundamentals; and author of Thermal Management: A Fabricator's Perspective. Visit I-007eBooks.com to download these and other?free, educational titles. He also co-authored “Fundamentals of Printed Circuit Board Technologies,” and is an I-Connect007 columnist. To read past columns, or contact Vardya, click here.
Suggested Items
UHDI Fundamentals: UHDI Bleeding-edge Manufacturing Applications, Part 1
11/14/2024 | Anaya Vardya, American Standard CircuitsLast month, I talked about ultra high definition interconnect (UHDI) in relation to entertainment applications. This month, I will explain bleeding-edge UHDI applications in manufacturing, which are revolutionizing the industry by enabling ultra-precise visual data transmission, high-speed communication between devices, and real-time monitoring. These UHDI technologies help manufacturers achieve higher efficiency, better quality control, and greater automation. Following are some leading-edge manufacturing applications of UHDI in manufacturing.
One Partial HDI Technique: mSAP
11/05/2024 | Andy Shaughnessy, Design007 MagazineChris Hunrath, vice president of technology at Insulectro, believes that mSAP just might be the trick for designers considering partial HDI. As Chris explains, the materials and equipment required for the mSAP process are easily available, and the process is well established. This could be a great option for designers working with BGAs that have a pitch of 0.5 mm or less.
Partial HDI: A Delicate Balance
10/30/2024 | I-Connect007 Editorial TeamPartial HDI can be the perfect solution for designers faced with escape routing from tight-pitch BGAs. But there are a variety of material, signal integrity, and DFM trade-offs to understand before you get fully into partial HDI. We asked Stephen Chavez to explain the fundamentals, as well as the details, of this promising process. Are you using partial HDI?
Flexible Thinking: Musings on High Density Interconnections
10/30/2024 | Joe Fjelstad -- Column: Flexible ThinkingPeople have been using high density interconnection (HDI) technology since the early 1980s, although it was not called HDI until the late 1990s. In the 1970s, ’80s, and early ’90s, engineers used HDI methods to develop hybrid circuits, which were later referred to as multichip modules (MCMs). These were arguably the first instantiation of heterogeneous interconnection technology, which has been the industry buzzword for almost a decade. These devices are a way of integrating multiple chips—both integrated circuits and discrete devices (resistors, capacitors, and inductors)—into a single package, typically using ceramic substrates with layers of insulation and metallic inks (often gold) and firing them at high temperatures.
Real Time with... SMTAI 2024: Summit Interconnect Doing Its Part to Rebuild Industry Expertise
10/29/2024 | Real Time with...SMTAIIn this interview from the recent SMTAI show, Nolan Johnson speaks with Jesse Vaughan from Summit Interconnect. Jesse hits the highlights for some of Summit's programs to promote skilled workers in our industry—programs such as apprenticeships, Emerging Engineers, and more.