Advanced Microscope Techniques Could Pave Way for Improved Computer Memories
September 8, 2022 | Argonne National LaboratoryEstimated reading time: 4 minutes

Anyone who has watched steam billow up from a boiling kettle or seen ice crystals form on a wet window in winter has observed what scientists call a phase transition.
Phase transitions — such as those between solids, liquids and gases — occur in all kinds of different substances, and they can happen rapidly or slowly. Scientists plan to use phase transitions to be able to control the electronic, structural or magnetic properties of different materials as they undergo these changes, such as for use in new types of computer memories.
“We’re able to zoom into a sample in terms of time and space in ways we have never been able to before.” — Youngjun Ahn, study author
In a new study, researchers have for the first time been able to look at a structural phase transition in minute detail on a very fast timescale. The scientists made X-ray ?“photographs” that are spaced less than one-tenth of 1 billionth of a second apart through a technique called nanodiffraction microscopy. ?“A typical video might play at 30 frames per second, so this is approximately a slow-motion video that can resolve dynamics that are extremely fast,” said Haidan Wen, a physicist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.
The ability to witness the evolution of material behavior with such precision in time and space has revealed unusual behaviors in certain materials that undergo a phase change, including many magnetic materials.
“We’re able to zoom into a sample in terms of time and space in ways we have never been able to before,” said Youngjun Ahn, the first author of the study. Ahn is a former graduate student intern at Argonne from the University of Wisconsin-Madison. For this work, he collaborated closely with Wen. ?“This method gives us a precise view of structural changes in our sample that are challenging to see with any other method,” Ahn said.
The study used the Hard X-Ray Nanoprobe operated by the Center for Nanoscale Materials (CNM) at the Advanced Photon Source (APS) at Argonne. The APS and CNM are DOE Office of Science user facilities.
In looking at phase transitions in an iron-rhodium compound, the researchers found a way to watch the structure of the compound change between two magnetic configurations. The change causes an expansion of the atomic network that is very small — but enough to have significant consequences for the magnetism.
Scientists can use the magnetic phases to create a new kind of magnetic storage that promises to be faster and more energy-efficient than conventional data storage. In all magnetic materials, manipulating phase transitions around the critical temperature at which they occur can provide the key to being able to flip an information-storing bit between a ?“1” and a ?“0”.
In order to fashion magnetic memories that are compact, scientists need to have a way to manipulate them precisely. One way to do that is with a local change of temperature.
By heating up a magnetic bit, scientists could potentially have a way to induce the reconfiguration that they use to encode information with less energy consumption, which is known as heat-assisted magnetic recording. ?“One of the things that’s very interesting about this particular material — iron-rhodium — is that it has a phase transition at a temperature that could be used for these kinds of applications,” said University of Wisconsin-Madison professor Paul Evans. ?“But in order to do the kinds of manipulations we’re interested in, we need a better ?‘camera.’ That’s why using this newly developed technique to study it is important.”
?“The key aspect of our experiment is that we are able to access the extremely small regions of space or quick moments in time with high precision that allows us to uncover nanoscale dynamics that has not been recognized before,’ added Wen, who conceived the work.
The upcoming upgrade to the APS will have significant implications for further experiments visualizing these kinds of phase transitions. ?“After the APS upgrade,” said Argonne X-ray scientist Martin Holt, ?“we expect to achieve higher spatial resolution, in particular, by exploiting the enhanced coherence of the X-ray beam. Our development of ultrafast time resolution within that type of X-ray microscopy is what helps us understand the causes of the types of effects we’re observing. This is a unique capability that the upgraded APS can offer.”
A paper based on the study, ?“X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition,” appeared in the May 6 issue of Proceedings of the National Academy of Sciences.
In addition to Ahn, Holt, Evans and Wen, other authors of the study include Argonne’s Mathew Cherukara, Zhonghou Cai, Michael Bartlein, Tao Zhou, Anthony DiChiara, Donald Walko, as well as Eric Fullerton of the University of California at San Diego.
The work was funded by DOE’s Office of Science (Office of Basic Energy Sciences).
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.