-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Designing Proper Planes
Without planes, designers would have to create thousands of traces to accomplish the same objectives. Power planes provide low impedance and stable power, and ground planes stabilize reference voltage, improve thermal performance, and help preclude EMI issues.
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Microvias Can Be Stacked in Certain Package Densities
October 13, 2022 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes
Summit Interconnect’s Gerry Partida recently spoke with the I-Connect007 Editorial Team about his research into root causes of weak microvias. Rather than a single manufacturing process cause, Gerry suggests that microvia reliability is the culmination of several material interactions and that contrary to popular belief, microvias can still be stacked in small, tight packaging densities. He highlights the need for simulation, as well as some of his findings that he plans to publish in a paper at IPC APEX EXPO 2023.
Nolan Johnson: Gerry, I understand your team has been doing some research into microvia stacking and will have a paper at the upcoming IPC APEX EXPO on this topic. What have you been learning?
Gerry Partida: Remember back in the early days of HDI, we would stack microvias as deep and plentiful as we wanted to? Then people started experiencing intermittent failures. Boards got hot, the components would fail, and it went back and forth. Manufacturing did something wrong, the assembler overbaked the boards, and it would go back and forth again. A lot of designs started to suffer, especially certain military products that would stack microvias. We would ask, “Why isn’t it working? Why does it work when it does work?” Most of the microvias that were stacked originally were small BGA packages. They were 0.4 mm or 0.5 mm, and those densities drove you to stack. These designs often were for the commercial OEMs, but if something failed, the commercial guys didn’t come back to discuss the issues.
But for the military guys who have ASICS that cost hundreds of thousands of dollars each, the stakes are much higher. If it is for space, then it can only be assembled once for flight; it cannot be taken off and reused. The military packaging then was a much wider pitch than the commercial guys who were stacking microvias initially.
When we looked at where the failures were happening, they were still happening with the commercial guys who were going three or four deep stacking microvias. They weren’t trying to make short, squatty, wide-diameter microvias because they were using thicker dielectrics to get wider lines for impedance. Consequently, we went for a time where there really didn’t seem to be a problem. Then it became, “We see a fracture at the target pad on the stack of the microvias,” and everybody thought there was a weakness in the electroless copper.
We all came up with these rules of thumb: Don’t stack more than two. A lot of DOEs were done, and they almost always concluded, “Do two stacks, then stagger off.” That seemed to work. Even fabricators we would work with had rules like, “Keep your aspect ratio for a single microvia at 0.75 to one. If you’re stacking them, keep them at 0.6 to one.” That seemed to work; we got good results.
Now, during this time we employed reflow resistance testing to monitor the strength of connections in the finished product. We started learning more about what works, and what doesn’t work. Some designs would slip through, where they do a three-stack on tight pitch, and they were passing. We were asking that if our rule of thumb was only two, then why is it working at three? When you look at the design, it’s a 0.4 mm pitch.
To read this entire conversation, which appeared in the September 2022 issue of PCB007 Magazine, click here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Elementary, Mr. Watson: The Four Horsemen of Copper Confusion
11/12/2025 | John Watson -- Column: Elementary, Mr. WatsonIf there were a PCB Design Dictionary of Confusing Terms, the cover would feature four words that have baffled generations of engineers: polygons, pours, planes, and floods—or what I refer to as the four horsemen of copper confusion. They sound simple, as if they belong in a geometry textbook or a weather report, but in PCB design, they overlap, develop, and sound interchangeable until you realize they aren't.
Alpha Insights, Performance by Design: Understanding Heat at the Core of Every Design
11/11/2025 | Team Alpha -- Column: Alpha Insights: Performance by DesignPower isn’t just about current. It’s about control. As electronic systems grow smaller and faster, every amp and every layer generates a new source of heat. That heat is more than a byproduct. It’s a measure of efficiency, a benchmark of performance, and often the first indication of failure.
The Shaughnessy Report: Zee Plane! Zee Plane!
11/11/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportPlanes aren’t magic, but they are big time-savers. Without planes, designers would have to create thousands of traces to accomplish the same objectives. You can imagine the first time a designer thought about using a sheet of copper, asking, “Hey, why am I killing myself laying out all these traces? Can’t I just use this sheet of copper instead?”
November 2025 Design007 Magazine: Proper Plane Design
11/10/2025 | I-Connect007 Editorial TeamWithout planes, designers would have to create thousands of traces to accomplish the same objectives. Power planes provide low impedance and stable power to every component on the board, much like a large power bus. Ground planes stabilize reference voltage, improve thermal performance, and help preclude EMI issues. Power and ground plane design is often a battle of tradeoffs.
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.