-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Stop Over-specifying Your Materials
May 25, 2023 | I-Connect007 Editorial TeamEstimated reading time: 3 minutes

Columnist Kelly Dack has had a pretty wide range of experiences. As a PCB designer, he has sat behind the desk at an NPI company, an OEM, a fabricator, and now an EMS provider. We asked him to share a few thoughts on the materials selection process and how it could be improved.
Kelly also explains how overly zealous PCB designers make things too complicated by over-specifying their materials, which leads to confusion once the board goes to volume production overseas. Are you over-constraining your material choices?
Andy Shaughnessy: Kelly, what is your process for material selection? Walk us through it.
Kelly Dack: Sure. I actually wrote a guideline for our customers that explains the material selection process. As mentioned, over-specification in the EMS realm is rampant and problematic from the standpoint of scaling products to volume overseas. This guide has a section on laminated materials that includes a simple, tried-and-true material specification. It says, “Materials: laminated glass epoxy resin type FR-4 series or equivalent per IPC-4101 with a Tg of greater than or equal to xxx.” This is a number that we can modify. We say, for instance, 170°C, and a Td (time to delamination) temperature of greater than 3XX°C. Those are all movable numbers that designers can edit.
That’s how we specify our laminate materials for printed circuit boards, unless the performance criteria dictates that it needs to go further and get more specific—for example, high-performance signal integrity constraints, impedance control, or exotic materials. But otherwise, FR-4 laminates cover 85–95% of our customers’ design requirements.
Shaughnessy: Where do designers typically go to find this information? What documents or guidelines should they use?
Dack: Many designers use their company’s documentation template or go to their elders and learn through knowledge that has been passed down. I just went through a bunch of our customers’ designs and fabrication drawings, and I found plenty of examples of customer material specification. Many of them call out a specific IPC-4101 slash number, and it’s usually the same slash number each time. It’s either 4101/26 or /21.
Shaughnessy: IPC has said that slash sheets were not ever meant for designers to use; they’re mainly a way for PCB supplier purchasing and marketing departments to communicate with buyers.
Dack: I’m glad to hear that confirmation as it was my understanding as well. This all came from the MIL-S-13949 spec back in the mil-spec days, most of which has been replaced by IPC standards. But we are seeing some of our customers’ designs specifying laminates by using slash numbers and I get the feeling it’s just because of tribal knowledge. If you look at most of the designs, they appear to be basic, not really requiring a specific material. The board would work fine with a generic glass-epoxy laminate because it has no impedance control or performance criteria. We just print and etch some copper onto it, create a circuit, and it moves electrons.
It’s usually only when we get into the super high-speed design in the gigahertz range where we have to start thinking about loss tangents and permittivities. Here’s the challenge: How much do you constrain? If you’re building your PCB design down at the local prototype shop, which will build a board any way you want, everybody seems fat and happy. But when you want to build 1 million boards, you must introduce a low-cost constraint because you can’t pay $1,000 a board and make a profit. You scale to volume to get cost savings. To realize maximum cost savings, this has always been done offshore. But designers must realize that offshore suppliers don’t have access to all the materials and capabilities that U.S. prototype companies have. Over-specification of laminate materials by composition, performance characteristics, or a trademarked source creates a terrible, but avoidable ordering situation, putting quotes on hold every single day. The simple fact is that it causes our offshore PCB suppliers to request and obtain approval for material substitutions before they can proceed.
To read this entire conversation, which appeared in the May 2023 issue of Design007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.