-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Everyday Life, Improved by Light: GRYPHON’s Photonic Discoveries
July 11, 2024 | DARPAEstimated reading time: 2 minutes
Radio frequency (RF) and microwave signals are integral carriers of information for technology that enriches our everyday life – cellular communication, automotive radar sensors, and GPS navigation, among others. At the heart of each system is a single-frequency RF or microwave source, the stability and spectral purity of which is critical. While these sources are designed to generate a signal at a precise frequency, in practice the exact frequency is blurred by phase noise, arising from component imperfections and environmental sensitivity, that compromises ultimate system-level performance.
This reality drives undesirable tradeoffs between performance, environmental sensitivity, and size that make the simultaneous achievement of stability, precision, and agility in an ultra-compact form factor an elusive feat. However, DARPA’s Generating Radio Frequency with Photonic Oscillators for Low Noise (GRYPHON) program could change all of that, as performers recently demonstrated in the first phase of the program aimed at developing compact, ultra-low-noise microwave frequency oscillators.
While extremely low phase noise sources do exist, they are expensive, lack tunability, and are impractically large for deployment on mobile platforms that would enable advanced sensing and communication applications. GRYPHON seeks to change this paradigm by realizing viable, small-footprint microwave sources that transcend today’s tradeoffs and far exceed current state of the art. Launched in January 2022, the program builds on advances in optical frequency division, integrated photonics, and non-linear optics – including those from previous DARPA efforts – to establish a new technology regime that transforms military and commercial capabilities.
GRYPHON performers, using different light-based approaches, have made critical progress towards generating high-purity microwaves in significantly reduced form factors. By integrating low-noise lasers with complex optical structures on low-loss photonic platforms, along with high-speed integrated circuits, researchers have established the viability of achieving ultra-low phase noise performance and shrinking these capabilities from conventional table-top sizes down to microchip-size form factors.
"The results and impact from Phase 1 of GRYPHON really show what’s possible. For the first time, we’re seeing how integrated photonics allows us to break from the traditional size vs. performance vs. capability trade space and operate in a regime with exquisite performance that is exponentially better than current state of the art," said Dr. Justin Cohen, GRYPHON program manager. "Better and faster communications, more accurate sensing, improved detection capabilities – this work could disrupt and advance countless applications."
The research findings of GRYPHON’s performers were recently featured in Science and Nature journal articles, as well as via the National Institute of Standards and Technology, highlighting the work of contributing NIST researchers and their team. Now in Phase 2, GRYPHON researchers are seeking to further reduce phase noise in their already high-performance sources while introducing tunability and compactifying to targeted form factors, all of which aim to provide systems with unprecedented utility and access to previously unattainable applications.
Suggested Items
iNEMI End-of-Project Webinar: Investigation of AI Enhancement to AOI for PCBA
10/25/2024 | iNEMIAutomated optical inspection (AOI) systems are essential in electronic manufacturing for ensuring the quality of printed circuit board assemblies (PCBAs).
Northrop Grumman’s Deep Sensing and Targeting Technology Goes Airborne to Advance Vision for the US Army
10/22/2024 | Northrop GrummanPhase two of Northrop Grumman Corporation’s Deep Sensing and Targeting (DSaT) system was successfully demonstrated at Vanguard 24, an annual capstone experiment hosted by the U.S. Army. DSaT gathers space-based data for long-range precision fires while airborne, helping bridge specific capability gaps and future warfighting requirements by expanding mission effectiveness and standoff range for Army platforms.
KLA Completes First Phase of US$200 Million Singapore Operations Expansion
10/04/2024 | KLAKLA, a world leader in developing industry-leading equipment and services that advance innovation throughout the electronics industry, today celebrated the completion of Phase 1 of its newest manufacturing facility.
RTX to Develop Ultra-wide Bandgap Semiconductors for DARPA
10/03/2024 | RTXRaytheon, an RTX business, has been awarded a three-year, two-phase contract from DARPA to develop foundational ultra-wide bandgap semiconductors, or UWBGS, based on diamond and aluminum nitride technology that revolutionize semiconductor electronics with increased power delivery and thermal management in sensors and other electronic applications.
A Parametric Approach to the Environmental Impact of PCB Fabrication
09/09/2024 | Maarten Cauwe, imecSustainability for electronics is receiving more attention due to environmental concerns, regulatory obligations, and to ensure competitiveness in a growing market for sustainable products. To facilitate the discussion on the environmental impact of electronics, there is a strong need for data on energy use, carbon footprint, greenhouse gas (GHG) emissions, hazardous chemicals used during manufacturing, waste generation, etc.