-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute
Surface Finishes for High-Speed PCBs
The Nickel Doesn’t Make Cents!
PCB surface finishes vary in type, price, availability, shelf life, assembly process, and reliability. While each treatment has its own merits, electroless nickel immersion gold (ENIG) finish has traditionally been the best fine pitch (flat) surface and lead-free option for SMT boards over recent years. But unfortunately, nickel is a poor conductor with only one third the conductivity of copper. Also, nickel has a ferromagnetic property that can adversely affect electromagnetic fields in the high-frequency domain.
The PCB industry has addressed the issue of the ferromagnetic properties of nickel by introducing a nickel/gold (NiAu) alloy. Gold is slightly less conductive than copper, and has no ferromagnetic properties, so it has relatively little impact on the conductor's loss characteristics at high frequencies.
Microstrip (outer) layers of a multilayer PCB suffer from wide variations in both trace width and thickness. This is due to the additional fabrication process of electroplating the through-holes. Copper barrel thickness is generally specified as a minimum of 1 mil (25.4 µm), and so extra copper plating is applied to the surface in order to produce the correct barrel wall thickness. This, unfortunately, is also added to the traces. But as the thickness and width varies, so does the impedance. This is one of the reasons why routing controlled impedance signals, on the microstrip layers, should be avoided.
It is also very important not to pour copper fills on the signal layers of the board, as these will dramatically change the impedance of the traces rendering the impedance control ineffective.
Read the full column here.
Editor's Note: This column originally appeared in the June 2014 issue of The PCB Design Magazine.
More Columns from Beyond Design
Beyond Design: High-speed Rules of ThumbBeyond Design: Integrated Circuit to PCB Integration
Beyond Design: Does Current Deliver the Energy in a Circuit?
Beyond Design: Termination Planning
Beyond Design: Dielectric Material Selection Guide
Beyond Design: The Art of Presenting PCB Design Courses
Beyond Design: Embedded Capacitance Material
Beyond Design: Return Path Optimization