-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Material Witness: Low-Flow Prepregs–Defining the Process
March 19, 2015 | Chet GuilesEstimated reading time: 5 minutes
What this looks like is shown in Figure 3. The sample involves three pieces of prepreg into which are punched two 1” diameter holes, as shown. After test, the resin has flowed into the circles (irregularly as shown in the middle diagram) and the average reduction in diameter of the circle as measured along several diameters is defined as the “flow. A typical low-flow product may flow into the holes in a range of 0.030” to as much as 0.150” depending on the grade and type. Measuring this manually has proved to have a great deal of inherent variability (as much as +/- 30% of nominal!), so use of a computerized automated measurement system as is indicated by the test coupon on the far right has been developed in which 500 to 1000 individual measurements are taken around the “diameter” of the flow bead and a statistical “best fit” circle is defined to determine the flow.
Although we have gotten something of a handle on the measurement method, the test itself remains somewhat variable, and correlation between test presses and between test facilities remains problematic. To be practical as a “real time” manufacturing test, the test procedure needs to be able to be completed in a relatively few minutes. The quality of die punched holes in the prepreg is critical, since any damage to prepreg edges will result in irregular flow. The IPC method also results in unrealistically high heat-up rates (several hundred degrees F per minute!) and not unexpectedly, irregular flow.
Users who employ test procedures based on normal PWB manufacturing processes with heat-up rates around 10oF/minute get better results, but the testing takes as long as a normal press cycle, far too long for a real-time prepreg manufacturing test. So what happens? We test using the IPC procedure. Many of our customers test in a realistic process simulation. And there is (surprise, surprise!) often poor correlation and the potential for issues in terms of how and whether specs have been met.
One of the unintended consequences of test methods that relate only marginally to in-use parameters is that individual products (rather than generic slash sheet designations) become locked into processes because engineers and shop floor people become familiar with their use and make the necessary adjustments in pressure and temperature, prepreg cut-backs, etc. so that they will work with a variety of designs. They come to have the belief that the product itself is infinitely process-flexible, and so anything new seems never to work quite like “Product X.” Different products, even if they are “the same” according to IPC testing (remember, this test uses a heat-up rate of several hundred degrees F/minute 200 psi on a 5.5 x 7 inch test specimen), do not necessarily work the same way in a real PWB process and the only way to really get the best out of any low flow product is to work with it in your own process until you are sufficiently familiar with it to make it jump through hoops.
I’m sure there are a few “miracle” prepregs out there that have inherent organic bio-feedback loops that adapt flow and viscosity to the specific design being manufactured, but for the most part we in the business have to be constrained by the laws of chemistry and physics, the limitations of human-designed processes, and the constraints of standard testing. Doing “the best we can with what we’ve got” is not a cheap excuse to avoid getting better; over the years we’ve improved materials and methods, and so have the guys producing PWBs. Working together we can evolve newer and better materials, provided we are willing to tune our processes to get the best out of them.
A topic for the future: How low-flow materials work in-process and what kinds of modifications of flow and viscosity have been made to open the process window with a minimum of pain.
Chet Guiles is a consultant for Arlon Electronic Materials.
Page 2 of 2Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/18/2025 | Nolan Johnson, I-Connect007It may be the middle of the summer, but the news doesn’t quit, and there’s plenty to talk about this week, whether you’re talking technical or on a global scale. When I have to choose six items instead of my regular five, you know it’s good. I start by highlighting my interview with Martyn Gaudion on his latest book, share some concerning tariff news, follow that up with some promising (and not-so-promising) investments, and feature a paper from last January’s inaugural Pan-European Design Conference.
Elephantech Launches World’s Smallest-Class Copper Nanofiller
07/17/2025 | ElephantechJapanese deep-tech startup Elephantech has launched its cutting-edge 15 nm class copper nanofiller – the smallest class available globally. This breakthrough makes Elephantech one of the first companies in the world to provide such advanced material for commercial use.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.