-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Material Witness: Low-Flow Prepregs–Defining the Process
March 19, 2015 | Chet GuilesEstimated reading time: 5 minutes
What this looks like is shown in Figure 3. The sample involves three pieces of prepreg into which are punched two 1” diameter holes, as shown. After test, the resin has flowed into the circles (irregularly as shown in the middle diagram) and the average reduction in diameter of the circle as measured along several diameters is defined as the “flow. A typical low-flow product may flow into the holes in a range of 0.030” to as much as 0.150” depending on the grade and type. Measuring this manually has proved to have a great deal of inherent variability (as much as +/- 30% of nominal!), so use of a computerized automated measurement system as is indicated by the test coupon on the far right has been developed in which 500 to 1000 individual measurements are taken around the “diameter” of the flow bead and a statistical “best fit” circle is defined to determine the flow.
Although we have gotten something of a handle on the measurement method, the test itself remains somewhat variable, and correlation between test presses and between test facilities remains problematic. To be practical as a “real time” manufacturing test, the test procedure needs to be able to be completed in a relatively few minutes. The quality of die punched holes in the prepreg is critical, since any damage to prepreg edges will result in irregular flow. The IPC method also results in unrealistically high heat-up rates (several hundred degrees F per minute!) and not unexpectedly, irregular flow.
Users who employ test procedures based on normal PWB manufacturing processes with heat-up rates around 10oF/minute get better results, but the testing takes as long as a normal press cycle, far too long for a real-time prepreg manufacturing test. So what happens? We test using the IPC procedure. Many of our customers test in a realistic process simulation. And there is (surprise, surprise!) often poor correlation and the potential for issues in terms of how and whether specs have been met.
One of the unintended consequences of test methods that relate only marginally to in-use parameters is that individual products (rather than generic slash sheet designations) become locked into processes because engineers and shop floor people become familiar with their use and make the necessary adjustments in pressure and temperature, prepreg cut-backs, etc. so that they will work with a variety of designs. They come to have the belief that the product itself is infinitely process-flexible, and so anything new seems never to work quite like “Product X.” Different products, even if they are “the same” according to IPC testing (remember, this test uses a heat-up rate of several hundred degrees F/minute 200 psi on a 5.5 x 7 inch test specimen), do not necessarily work the same way in a real PWB process and the only way to really get the best out of any low flow product is to work with it in your own process until you are sufficiently familiar with it to make it jump through hoops.
I’m sure there are a few “miracle” prepregs out there that have inherent organic bio-feedback loops that adapt flow and viscosity to the specific design being manufactured, but for the most part we in the business have to be constrained by the laws of chemistry and physics, the limitations of human-designed processes, and the constraints of standard testing. Doing “the best we can with what we’ve got” is not a cheap excuse to avoid getting better; over the years we’ve improved materials and methods, and so have the guys producing PWBs. Working together we can evolve newer and better materials, provided we are willing to tune our processes to get the best out of them.
A topic for the future: How low-flow materials work in-process and what kinds of modifications of flow and viscosity have been made to open the process window with a minimum of pain.
Chet Guiles is a consultant for Arlon Electronic Materials.
Page 2 of 2Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.