-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Understanding DFM and its Role in PCB Layout
April 14, 2015 | Rick Almeida, Downstream TechnologiesEstimated reading time: 2 minutes
DFM, DRC, DFF, DFA, DFwhat? These are all terms used daily in the PCB design world regarding manufacturing analysis, and they are often used interchangeably. But what exactly is DFM and why is it such an important, but often ignored aspect of the PCB design process?
Let’s start by clarifying some terms. DFM is short for “design for manufacturability.” It is the process of arranging a PCB layout topology to mitigate problems that could be encountered during the PCB fabrication and assembly processes required to manufacture an electronic system. Addressing fabrication issues is what’s known as design for fabrication (DFF), and addressing assembly issues during design is known as design for assembly (DFA). The two together mostly make up DFM analysis—mostly.
In many cases, the term DRC, which stands for design rule checking, is also used interchangeably with DFM and creates further confusion. That’s understandable, because DRC issues detected in manufacturing can indeed have a direct impact on the manufacturability of a PCB. However, DRC is markedly different from DFF and DFA. Think of DRC as a hard pass/fail detection of a problem in a PCB. Either a problem exists or it doesn’t. In engineering, DRC is used to ensure that PCB layout connectivity accurately reflects the connectivity defined in a board’s associated schematic diagram. But connectivity is only one aspect of DRC. The “R” stands for rules. The rules are used largely to define the minimum spacing allowed between various PCB objects for the entire PCB or for individual layers, nets or areas on the PCB. In engineering, the spacing may have direct impact on circuit performance. In manufacturing, spacing may play a pivotal role in the ability to fabricate or assemble a PCB. As a result, DRC becomes a subset of DFM, but only if the rules used reflect a manufacturer’s requirements for spacing. Otherwise, DRC is used solely for electrical verification.
DFM’s two primary components, DFF and DFA, are more nuanced than DRC. While DRC detects very specific discrepancies from the intended interconnect, DFM identifies issues in the PCB topology that have the potential to create manufacturing problems. What’s more, a DRC defect will be present in every copy of the PCB built, so if there is a short missed in DRC, every PCB will contain the short, no matter how many PCBs are produced. By contrast, if the same PCB quantities contain DFM issues, problems may only manifest in some of the PCBs while others perform correctly as expected.
For example, a PCB layout containing very thin pieces of copper created in the design tool by rule would be correct per the schematic. And if spaced properly it would pass DRC. However, that same sliver, being so thin, could potentially detach on the physical PCB and inadvertently connect itself to other copper elements during assembly, thus creating shorts on some PCBs but not on others. So, the sliver would pass DRC verification, but in real-world manufacturing the sliver could cause some PCBs to fail. Without DFM, this problem would go on undetected and would result in scrap or rework.
This article originally appeared in the March 2015 issue of The PCB Design Magazine. To read this article in its entirety, click here.
Suggested Items
Fresh PCB Concepts: PCB Design Essentials for Electric Vehicle Charging
11/27/2024 | Team NCAB -- Column: Fresh PCB ConceptsElectric vehicles (EVs), powered by electricity rather than fossil fuels, are transforming transportation and reducing environmental impacts. But what good is an EV if it can't be easily charged? In this month's column, Ramon Roche dives into the role of printed circuit boards (PCBs) in electric vehicle charging (EVC)—and the design considerations.
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.