-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueCreating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Rogers’ John Coonrod on Insertion Loss
June 20, 2016 | Barry Matties, I-Connect007Estimated reading time: 7 minutes

John Coonrod of Rogers Corporation gave a keynote presentation at the recent Geek-A-Palooza trade show, concentrating on printed circuit board fabrication’s influences on insertion loss. I sat down with John to learn more about his presentation and what OEMs and designers need to be aware of to avoid insertion loss.
Barry Matties: John, why don't we start with a little background about what you do and where you’re from?
John Coonrod: I'm part of Advanced Connectivity Solutions at Rogers Corporation. We generally make high-frequency materials normally used in PCBs—specialty boards for the high-frequency microwave and millimeter wave range of frequencies. I do electrical characterization on our materials or competitor materials, if I can get my hands on them (laughs), and I also do evaluations on any kind of new materials that we are developing for electrical performance.
Matties: Nice, and you've been at Rogers for many years?
Coonrod: A long time, since 1987.
Matties: We are here at Geek-A-Palooza and you're doing a keynote. What is the topic of your presentation today?
Coonrod: The topic is insertion loss, and more specifically printed circuit board fabrication’s influences on insertion loss. Whenever you build a printed circuit board, just due to the nature of building the board, you will have some insertion loss variables. Really, what I'm going to be showing today are some of the studies I've done looking at that, and the effects of different PCB fabrication processes on insertion loss.
Matties: And in this presentation, what's going to be the takeaway for your audience?
Coonrod: More than anything else, I'm hoping this is going to be educational, because I start off with some really basic ideas about insertion loss and why it is important, and then I get into how these different PCB fabrication influences can have an effect. One of the reasons I'm doing this is for people who may not know much about insertion loss, and that way they get a good introduction and overview of it. Then the other idea, I'm hoping, is that people who do know something about insertion loss and do circuit designs will now know more about some of these variables that they may not have known about before.
Because I've run into that from time to time, where an OEM or someone will come to us and say, "Hey, your material is not working right," and then we find out it's not really the material, it's something special or something funny that happened between the design and the fabrication. The more the designers know about these things the better, I think.
Matties: Communication is key. Could you give a quick overview of insertion loss for those of our readers that may not know anything about it?
Coonrod: Insertion loss, in an RF sense and in a frequency sense, is really the total loss of the circuit. The way to think about it is when you apply RF power on one end of the circuit, and you try to take power off the other end, you don't get the same amount of power you put into it because there's some loss there, and that's really what the circuit is doing. It's kind of a complicated issue where there are several other things that come into play, but it's really just how much loss the circuit really causes to an applied RF signal.
Matties: Is the variable the design, primarily?
Coonrod: That's definitely part of it. There's really a big interaction between three important things: the materials, the design and the PCB fabrication. And that’s because, for one particular design, the PCB fabricator can build it multiple different ways and one way may impact the insertion loss differently than another way. So that is kind of my thought process here, and what I’ll be trying to show are some of these variables.
Page 1 of 2
Suggested Items
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.