-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssuePower Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Rogers’ John Coonrod on Insertion Loss
June 20, 2016 | Barry Matties, I-Connect007Estimated reading time: 7 minutes
Matties: You've talked about different manufacturing processes. How does an OEM or buyer of that technology verify this before they get into a problem situation?
Coonrod: That's a good question, actually. Because normally an OEM designs a board and sends it off for the fabricator to build it, and they put on there what they are interested in, of course, for conductor widths, what kind of finish they want and things like that. That gives the PCB fabricator a lot of room to do a lot of different things. Normally, the OEMs don't specify some of the things that I'm going to be talking about today, and in some ways I hope what I'm going to talk about will be enlightening for the OEMs, but also for the PCB fabricators too—that they need to be more aware of how they build the boards sometimes for the OEMs. I'm not sure if that really answers your question or not though... (laughs)
Matties: Well, it sounds like there's no real answer.
Coonrod: No, not really.
Matties: Other than that they can be aware of the problem. If the OEM is aware of the nature of the problem is there a specification where they can come in and say, "We want it manufactured like this"?
Coonrod: There are some cases, as you will see when I go through my presentation, where they can put a spec on things and say, "Okay, it has to be within this window," and then that takes care of the problem. In other cases it is the nature of the beast, and either the OEM has to realize that their design is going to have this wider range than they expected or they have to re-design and do something different.
Matties: Is this a prevalent problem in the industry?
Coonrod: It's a pretty big deal, I think. Really what happens is a lot of the fabricators that have been in the industry a long time have learned these lessons along the way, so they are already doing a lot of this automatically and you just don’t run into this problem with some of the really experienced people. Then, in some cases, the OEMs are doing things that they haven't tried to do before because they are pushing the limits of technology and they're trying do different things with materials and processes that haven't be done before. So every now and then when you get the right combination, unexpected things can happen.
Matties: What does a designer need to be aware of in this process?
Coonrod: What I'm going to show today is about four major topics in the PCB fabrication process that can affect the performance of the RF board. One of them is copper plating thickness, because it's very common, obviously, to plate copper through the circuit. But copper plating thickness variation, how much it varies from one circuit to another, has a pretty big role on one type of design but not as much on another type of design. So I kind of split that up today, showing that copper plating thickness is more important with some designs than in other designs.
Then there is the plated finish, which is used a lot, where they put electroless nickel immersion gold (ENIG) on copper in order to have a good reliable board for a long period of time. ENIG is a good process, but there are some things that it does that causes more insertion loss. But with certain designs it causes more insertion loss than in other designs, so that's another thing where there are certain designs that can use ENIG and not have as much loss as others. The other two topics are copper surface roughness, which is a really big topic and I’m just going to scratch the surface today, and then the last one is solder mask, and that is another topic that comes up from time to time.
Matties: It sounds like once you find the right recipe, stick with it.
Coonrod: Yes, that is true. I think that's how lots of engineers are. Once you've got something that works, don't mess with it.
Matties: But isn't that a trap?
Coonrod: It can be, yes. Especially if you are trying to deal with new technologies. A lot of times when you're breaking out a new technology you have to do something different and you have no choice but to go out on a limb. And that's kind of what some of this presentation is. I'm really sharing my learning experiences of different things I've heard and seen in the industry or helped troubleshoot, and just trying to make sure everyone is aware of these potential hazards.
Matties: John, thanks for spending time with us. I look forward to your presentation.
Coonrod: Great, thank you.
Page 2 of 2Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.
Indium to Showcase High-Reliability Solder and Flux-Cored Wire Solutions at SMTA International
10/09/2025 | Indium CorporationAs one of the leading materials providers in the electronics industry, Indium Corporation® will feature its innovative, high-reliability solder and flux-cored wire products at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
‘Create your Connections’ – Rehm at productronica 2025 in Munich
10/08/2025 | Rehm Thermal SystemsThe electronics industry is undergoing dynamic transformation: smart production lines, sustainability, artificial intelligence, and sensor technologies dominate current discussions.
Amplifying Innovation: New Podcast Series Spotlights Electronics Industry Leaders
10/08/2025 | I-Connect007In the debut episode, “Building Reliability: KOKI’s Approach to Solder Joint Challenges,” host Marcy LaRont speaks with Shantanu Joshi, Head of Customer Solutions and Operational Excellence at KOKI Solder America. They explore how advanced materials, such as crack-free fluxes and zero-flux-residue solder pastes, are addressing issues like voiding, heat dissipation, and solder joint reliability in demanding applications, where failure can result in costly repairs or even catastrophic loss.