-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Beyond Design: How to Handle the Dreaded Danglers, Part 1
September 14, 2016 | Barry Olney, In-Circuit Design Pty LtdEstimated reading time: 2 minutes

Dangling via stubs can distort signals passing through your interconnect, and decrease the usable bandwidth of the signal. A via stub acts as a transmission line antenna, and has a resonant frequency determined by the quarter wavelength of the structure. At this frequency, the transmitted signal is greatly attenuated, by up to 3dB. For low-frequency signals, this is not much of an issue because these signals are significantly lower than the resonant frequency of the via stub.
However, for higher-frequency signals (>1GHz), which are becoming more common as performance specifications are increased, this issue becomes a problem because the signals are transmitted at frequencies near or at the resonant frequency of the via stub. Harmonic components that are odd multiples of the fundamental frequency can also be highly attenuated.
The conventional solution to this problem is to back-drill (or control-depth drill) the vias to bore out the via stub barrels, so that the via stubs are reduced in length, if not completely removed.
If the via is short, compared to the signal rise time, then it acts mostly as excess shunt capacitance. The entire length of the via contributes to the capacitance, while only the section where the signal current actually flows makes up the inductance. However, a long via stub can develop resonance that exacerbates the effects of its capacitance. I should point out that it is fine to have a plated through-hole (PTH) via, providing the signal goes in at one end and out at the other, using the entire length of the barrel.
When a via’s stub length is equal to a quarter wavelength of the signal frequency, the signal travels from the trace to the end of the stub and then bounces off the open circuit end-point and back to the trace for a total distance of a half wavelength. This half wavelength travel has the effect of shifting the phase of the signal by 180 degrees, creating resonance in the via stub. The phase-shifted, reflected signal has a maximum value at a time when the signal has a minimum value, and vice-versa.
The Nyquist frequency of a discrete signal is defined as a half of the sampling rate of the signal and will have a strong frequency component at this frequency. In addition, the signal can have strong power spectrum harmonic components at frequencies greater than the Nyquist frequency typically up to the 5th harmonic. The resonant frequency of the via stub is inversely proportional to the dielectric constant of the material, surrounding the via, with a wavelength of four times the length of the unused portion of the via.
To read this entire article, which appeared in the August 2016 issue of The PCB Design Magazine, click here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
The Shaughnessy Report: Winning the Signal Integrity Battle
09/09/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen I first started covering this industry in 1999, signal integrity was the hip new thing in PCB design. Conference classes on signal integrity were packed to the walls, and an SI article was guaranteed to get a lot of reads.
The Signal Integrity Issue: Design007 Magazine September 2025
09/09/2025 | I-Connect007 Editorial TeamAs the saying goes, “If you don’t have signal integrity problems now, you will eventually.” This month, our experts share a variety of design techniques that can help PCB designers and design engineers achieve signal integrity.
Beyond Design: Effective Floor Planning Strategies
08/20/2025 | Barry Olney -- Column: Beyond DesignComponent placement on a printed circuit board is more involved than simply fitting parts into available space. It plays a pivotal role in determining the board’s overall manufacturability, performance, reliability, and cost. Poor placement can compromise even the most meticulously designed PCB. Effective component placement alleviates mechanical stress, promotes efficient thermal management, and helps prevent excessive heat buildup.
The Art and Science of PCB Floor Planning: A Comprehensive Guide
08/14/2025 | Cory Grunwald and Jeff Reinhold, Monsoon SolutionsPCB design is an intricate and crucial part of developing electronic products. One of the foundational stages of PCB design is floor planning, a phase where the placement of components and the flow of signals are meticulously mapped out. A good floor plan ensures that the PCB performs well, is easy to manufacture, and meets all mechanical and electrical requirements. We’ll explore the essential aspects of floor planning, from its objectives and process to the challenges that designers face.
Materials and Manufacturing for the AI Era: The Next PCB Frontier
08/08/2025 | Edy Yu, Chief Editor, ECIO, and the I-Connect007 Editorial TeamAI is pushing hardware to its limits, and the bottleneck isn’t design anymore—it’s materials. Next-generation AI servers aren’t just heavier on layer counts. They demand better materials to handle the speed, heat, and signal integrity requirements of 400G, 800G, and even 1.6T Ethernet systems. Many server motherboards are already 32–36 layers. For the next wave of 1.6T-capable boards, expect 40–50 layers, which must maintain high-frequency performance without degrading signal quality.