-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Focusing on Surface Sensitivity for Reliability
August 20, 2019 | Andy Shaughnessy, I-Connect007Estimated reading time: 3 minutes

During the IPC High-Reliability Forum and Microvia Summit, I spoke with Customer Applications Scientist Elizabeth Kidd and Sales Engineer Alex Bien, both of BTG Labs, about their presentation on the challenges of working with highly sensitive surfaces, such as the risk of contamination. We also discussed the various surface characterization techniques that BTG Labs uses to identify such contaminants, and some PCB design strategies for creating a better surface—and a more reliable board.
Andy Shaughnessy: Elizabeth, it’s nice to meet you. I know you’re giving a presentation in a few days, but tell us about the company, and then we’ll talk about your presentation.
Elizabeth Kidd: Sure. BTG labs is a materials science company specializing in surface science and adhesion technologies. We have our roots in being a research and development lab and scoping root cause analyses for people who are scratching their heads at these industrial adhesion problems. From there, we develop the technology to make manufacturing floor inspections of materials as they go through their critical surface process points.
Alex Bien: We help folks to hone in on one area—the surface—that they’ve never had eyes on nor had a way to quickly evaluate surface chemistry in a fast, point-and-shoot manner. Our opening speaker today is addressing this lack of insight into the three nanometers that we need to control to create reliable adhesion. Thus, our focus is putting that technology to the floor in the hands of people who are making dollars-and-cents decisions every day.
Kidd: And taking the high sensitivity of R&D techniques—such as XPS, X-ray photoelectron spectroscopy, and FTIR, which is Fourier transform infrared spectroscopy—that have their eyes on the top molecular layer of a surface, and being able to scale that to a method or technique that can be taken onto the manufacturing floor.
Shaughnessy: Can you also tell us about your presentation?
Kidd: The presentation addressed what we just mentioned—controlling your surface process to better your wire bonding, die pad bonding, laminate coating adhesion, and all of those things. We even have some applications for the coupling agents that we were speaking of known as a conversion coating, and other industries use those organosilanes to increase adhesion between organic material and inorganic material.
Shaughnessy: Are you talking about copper, FR-4, and any sort of surface?
Kidd: Yes. We’ll have some applications in metallics, polymers, and in composites as well.
Bien: That’s a good point, though. It’s particularly difficult to control surface chemistry and match surface chemistry between dissimilar materials. It’s very easy to bond metal to metal, and it’s pretty easy to bond composite to composite, but metal to polymer, glass to polymer, and those material interfaces are more challenging to create to promote adhesion.
Shaughnessy: What are the biggest takeaways from your talk?
Kidd: Namely, the sensitivity of this surface. As Alex mentioned, we have a monomolecular layer that we’re trying to control, and that layer is highly sensitive to contamination events. Contact contaminants from the manufacturing process—things like upstream process aids from stamping or anything left over from any wash process from a chemical etch bath—have a huge impact. Or perhaps you’ve had a change in your supply chain where supplier X used chemical X, and now supplier Y is using chemical Y, and all of a sudden, you have more random failures or successes, and you don’t know why.
It’s drawing attention to those small changes in a process that can affect that monolayer that we’re trying to adhere to. We’ll mainly be talking about contamination, how to look for it, how to characterize that, using various surface characterization techniques—such as FTIR, XPS, and contact angle measurements—and surface activation and detection of coatings. The main takeaway is to increase the awareness of the sensitivity and how you can change—negatively or positively—that surface, even unknowingly.
Shaughnessy: With one small thing having a large influence on the process.
Bien: A small change in the process creates a snowball effect downstream.
Kidd: Exactly. Think about a fingerprint. If you put a fingerprint on the surface, that’s 1,000–10,000 molecules thick. If you try to stick something to it now, you’re not sticking to the surface; you’re sticking to the chemicals and the oil from that person’s fingers. That kind of sensitivity is important.
To read the full article, which appeared in the July 2019 issue of PCB007 Magazine, click here.
Suggested Items
ICT Spring Seminar: Nickel Not Welcome Here
03/12/2025 | Pete Starkey, I-Connect007After a miserable, dull, and damp English winter, a really pleasant nearly spring day with the sun shining and daffodils in bloom greeted delegates to the Institute of Circuit Technology Spring Seminar at Puckrup Hall near Tewkesbury, March 5, in Gloucestershire, UK.
Multicircuits Expands Capabilities with State-of-the-Art Automated Copper Via Fill Process
03/10/2025 | MulticircuitsMike Thiel, president of Multicircuits, a leading provider of high-reliability printed circuit boards, has announced the addition of a state-of-the-art automated copper via fill process to their advanced manufacturing capabilities. This strategic investment enhances the company’s ability to deliver cutting-edge solutions for demanding industries, including aerospace, defense, medical, and high-speed telecommunications.
EIPC 2025 Winter Conference, Day 2: A Roadmap to Material Selection
02/20/2025 | Pete Starkey, I-Connect007The EIPC 2025 Winter Conference, Feb. 4-5, in Luxembourg City, featured keynotes and two days of conference proceedings. The keynote session and first-day conference proceedings are reported separately. Here is my review of the second day’s conference proceedings. Delegates dutifully assembled bright and early, well-rested and eager to participate in the second day’s proceedings of the EIPC Winter Conference in Luxembourg.
Designers Notebook: Addressing Future Challenges for Designers
02/06/2025 | Vern Solberg -- Column: Designer's NotebookThe printed circuit board is and will probably continue to be the base platform for most electronics. With the proliferation of new generations of high I/O, fine-pitch surface mount semiconductor package variations, circuit interconnect is an insignificant factor. Circuit board designers continually face challenges such as component quantity and complexity, limited surface area, and meeting the circuit board’s cost target. The printed circuit design engineer’s prominent position demands the development of efficiently manufacturable products that perform without compromise.
DesignCon 2025, Day 2: It’s All About AI
01/30/2025 | Marcy LaRont, I-Connect007It’s hard to get away from the topic of artificial intelligence, but why would you? It’s everywhere and in everything, and my time attending presentations about AI at DesignCon 2025 was well worth it. The conference’s agenda featured engaging presentations and discussions focused on the technological advancements in AI, big data centers, and memory innovations, emphasizing the critical relationship between processors and circuit boards.