-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Mentor Tools: Optimized for Flex and Rigid-flex Design
August 1, 2019 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 2 minutes
With the launch of the new Flex007 section in Design007 Magazine, we asked David Wiens, product marketing manager with Mentor, a Siemens Business, to tell us about their tools’ flex and rigid-flex design capabilities. As David explains, today’s higher-end design software tools are optimized for flex design, making workarounds a thing of the past.
Andy Shaughnessy: What are your customers’ biggest challenges in designing rigid-flex?
David Wiens: Engineering teams have designed advanced rigid-flex products for years using a series of workarounds to their EDA tools, often verifying with paper dolls. Rigid-flex designs require advanced stackup constructs (e.g., multiple outlines, each with its own stackup, and new materials). There are also additional rules that need to be applied, including bend/fold control with collision clearances, curve routing with arcs and teardrops, hatched plane fill shapes, component placement limits in flex areas, and fabrication rules around board stiffeners and coverlays. The workarounds naturally take longer to implement and often result in errors because the design must be checked manually. This can lead to a non-optimized product because once something is designed, nobody wants to go back and make ECOs. Some errors, such as copper micro-cracks, create long-term product reliability issues. Manufacturing is also a challenge. Design teams must align with their manufacturer to understand the costs of different rigid-flex structures—costs can go up quickly—and optimize the hand-off from design to manufacturing.
Shaughnessy: Tell us about the rigid-flex design capabilities in the latest versions of Mentor’s tools.
Wiens: Our solution supports flex, rigid, or rigid-flex with a common set of functionality. Native support for flex/rigid-flex extends across the flow, from initial stackup definition through design validation and manufacturing outputs, eliminating time-consuming workarounds.
It starts with an independent stackup for each rigid or flex element; these can easily be modified or overlapped. This approach limits the board outline and stackup modifications necessary when the shape of the board changes. With flex stackups, there are additional materials and layer types to model, such as cover layers, stiffeners, and adhesives. These materials are intelligent and are understood at design verification as well as the hand-off to manufacturing. Control of where bends occur is critical, so a bend area object defines the location, radius, angle, and origin. Attributes also define placement, routing (e.g., via utilization, trace corners, trace width changes, etc.) and plane metal (e.g., hatch/cross-hatch) rules in the area.
For place and route, each rigid-flex area has its own external/internal layers, so parts can be placed on any external layer (including flex regions and/or in cavities) with appropriate pads and openings automatically handled. During routing, true arcs are utilized to minimize stress fractures in flex regions, and they adhere to the constraint-driven, correct-by-design methodology for which we’re known. Curved teardrops are automatically generated and maintained dynamically. Due to the automation throughout layout, design changes are easy and safe.
To read this entire interview, which appeared in the July 2019 issue of Design007 Magazine, click here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.
Target Condition: Distribution of Power—Denounce the Ounce
11/05/2025 | Kelly Dack -- Column: Target ConditionHave you ever wondered why the PCB design segment uses ounces to describe copper thickness? There’s a story behind all of this—a story that’s old, dusty, and more than a little absurd. (Note that I didn’t add “Like many of us.”) Legend has it that back in the days of copper tinkers and roofing tradesmen, the standard was set when a craftsman hammered out a sheet of copper until it weighed one ounce, when its area conveniently matched the square of the king’s foot.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.