-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRigid-flex: Designing in 3D
In this month’s issue, our expert contributors share their best tips, tricks and techniques for designing rigid-flex circuits. If you’re a rigid board designer considering moving into the 3D world of rigid-flex, this issue is just what the doctor ordered!
Simulation, Analysis, and AI
Getting today’s designs “right the first time” is critical, especially with costly advanced PCBs. Simulation and analysis software tools can help you in the fight to eliminate respins. They’re not magical, but they can predict the future of your design.
Advanced, Complex & Emerging Designs
This month, our contributors focus on designing PCBs with advanced, complex and emerging technologies. We investigate design strategies for boards that are on the cutting edge of technology, or crazily complex, or so new that designers are still writing the rules as they go.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
Barry Olney’s High-Speed Simulation Primer
April 9, 2021 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes

The I-Connect007 editorial team recently spoke with Barry Olney of iCD about simulation. Barry, a columnist for Design007 Magazine, explains why simulation tools can have such a steep learning curve, and why many design engineers are still not using simulation on complex high-speed designs.
Barry also highlights common mistakes that design engineers make using simulation tools, and he offers a variety of tips and techniques for anyone dealing with simulation challenges. Among them: Don’t trust reference designs and datasheets.
Andy Shaughnessy: What are some of the biggest problems in simulation? In our surveys, engineers say that they have trouble doing simulation and analysis. What is so tough about it?
Barry Olney: I think the biggest problem, Andy, is time, and that’s the same with PCB design in general. The PCB design is the last process in the design flow, and when I get a job for a board layout, it’s already behind schedule. I’ve never ever had a job where it was on schedule and everything was running smoothly. So, you’re pushed for time during the whole process, and to add simulation on top of that, that pushes it back another week or so. Management is reluctant to do it because they think, “Well, it may work and then we can get it through just a little bit behind schedule, but if we leave it another week then it delays things even further.” It seems they don’t have time to do it right the first time, but they’ve got the time for a re-spin.
A lot of engineering managers actually schedule in a re-spin because they believe they need at least two iterations before they get a working product. So, time is the biggest factor. That’s why they generally tend to skip simulation. There’s also the learning curve associated with the high-end tools that requires experience—not just with the tools, but with high-speed design rules. Sourcing IBIS models is another big issue. Maybe you can’t find the model, so you have to compromise. IC vendors are now supplying most IBIS models, but for FPGAs, in particular, if you get the default IBIS model from the vendor’s website, it has a default pin assignment, but once the EE places and routes the actual FPGA chip, you need to redefine the pin assignments for each signal.
Now, the pin assignment of the FPGA that someone designs isn’t the same as the one on the IBIS model, and that’s where it all goes haywire. You think, “That simulation is simple. You just have to import the IBIS models into the transmission line model and click Go.” That should happen, but, it doesn’t. Where you don’t have pin assignments matching, you have to manually select the required FPGA sub-models from the thousands of pins with 50 or so sub-models. And these have all got cryptic names that are different for each IC vendor. So, you actually have to find the model or driver model that matches the transmission line that you’re trying to simulate. Or maybe you cannot find the model at all. Good luck sourcing a connector model. So, again, this all takes time. It took me years to figure out how to do it properly, quickly, and efficiently.
To read this article, which appeared in the April 2021 issue of Design007 Magazine, click here.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/22/2023 | Nolan Johnson, I-Connect007This week has been chock full of news about upcoming trade shows and conferences. Clearly, the season is upon us. This week, I-Connect007 reported on PCB West in Santa Clara (often referred to as the show which kicks off trade show season) and the topic of artificial intelligence was everywhere. By the looks of it, not just at the conference, either. For months now, the mainstream media has been gobbling up all sorts of news about generative AI engines, painting the picture that we’ll all lose our jobs to these tools, while also reporting on situations where the results from AI have gotten progressively worse over time.
Q2 Revenue for Top 10 Global IC Houses Surges by 12.5% as Q3 on Pace to Set New Record
09/21/2023 | TrendForceFueled by an AI-driven inventory stocking frenzy across the supply chain, TrendForce reveals that Q2 revenue for the top 10 global IC design powerhouses soared to US $38.1 billion, marking a 12.5% quarterly increase.
Cadence Advances Hyperscale SoC Design with Expanded IP Portfolio for TSMC N3E Process
09/21/2023 | Cadence Design Systems, Inc.Cadence Design Systems, Inc. announced it has expanded its design IP portfolio on TSMC’s 3nm (N3E) process—most notably with the addition of the flagship Cadence® 224G Long-Reach (224G-LR) SerDes PHY IP, which has achieved first-pass silicon success.
Connect the Dots: Best Practices for Prototyping
09/21/2023 | Matt Stevenson -- Column: Connect the DotsPCB prototyping is a critical juncture during an electronic device’s journey from concept to reality. Regardless of a project’s complexity, the process of transforming a design into a working board is often enlightening in terms of how a design can be improved before a PCB is ready for full production.
Cadence to Acquire Intrinsix Corporation from CEVA
09/20/2023 | Cadence Design Systems, Inc.Cadence Design Systems, Inc. and CEVA, Inc. announced that they have entered into a definitive agreement for Cadence to acquire Intrinsix Corporation, a wholly owned subsidiary of CEVA and a provider of design engineering solutions focused on the U.S. aerospace and defense industry.