-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAdvanced Packaging and Stackup Design
This month, our expert contributors discuss the impact of advanced packaging on stackup design—from SI and DFM challenges through the variety of material tradeoffs that designers must contend with in HDI and UHDI.
Rules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Designing for Material Conservation Means Changing Attitudes
August 29, 2022 | I-Connect007 Editorial TeamEstimated reading time: 4 minutes
It makes a lot of sense: During times when the supply chain is stretched to the breaking point—and the last few years certainly qualify—what if PCB designers created boards that used fewer components and less laminate? Do PCBs still have to be 0.062" thick? Why not reduce layer count while they’re at it?
Andy Shaughnessy and Nolan Johnson spoke with I-Connect007 columnist Dana Korf about the idea of designing a PCB with material conservation in mind. Is it a great new idea, or are we opening a whole new can of worms and a separate group of problems?
Andy Shaughnessy: Dana, our August design issue focuses on material conservation, which has become a topic of conversation during the supply chain snafu. It seems simple—let’s just use fewer components and less laminate, right? What are your thoughts on that? You were working at this huge volume level in China, where saving a few ounces of copper or a few components here and there could mean millions of dollars. Was conserving materials something on your radar screen?
Dana Korf: Actually, I just saw an interesting email this morning that included Happy Holden on that subject. The one comment that struck me was someone saying that boards don’t have to be 0.062" thick anymore; that was set in the 1950s. Can we make thinner boards? Use thinner materials? Consume less of everything? That’s a very interesting comment. But they’re right; we’re stuck on a 1950s architecture, basically. And in a regular FR-4 board, traditionally the material cost is about 16-20% of the total cost.
With high-performance boards, it could be 80% of the board cost. People drive to use lower-end materials because as performance goes up, that ratio goes up. Could we use thinner materials and consume less? That’s one of the big advantages of 3D printing for circuit boards—we don’t waste anything. You don’t rout out a panel. You don’t use layers. You print your trace of any X, Y, Z fashion you want, so you don’t need to drill holes and you don’t consume drill bits, copper plating chemistries, etc. That very topic is one nice advantage about the 3D world; it’s one of the side advantages.
Do I see a lot of people thinking that way? No, but as someone pointed out in our email thread, on the average, our typical board is four or six layers, and 0.062" thick. Why can’t we make it 0.050"? Why not? We would save material. That’s very interesting. The industry needs to change the way we think.
Shaughnessy: As Happy was saying, if you start making the board itself thinner, you may run up against ultra HDI problems, as well as changing things like impedance, too. You’d have pros and cons.
Korf: Yes. In a traditional board shop, you’re trying to use the entire sheet size that the laminator makes, so they don’t throw away or have to recycle anything. Then you get to the panel, and you try to use everything because you pay for the entire panel whether you receive it or not. That work has been going on for a long time just to help reduce costs related to throwing material away. As I like to say, “Minimizing that effect to save money.” A lot of it is already recycled anyway.
I haven’t been in any meetings with designers who say, “I’m trying to use fewer materials to save the environment.” I’ve really never heard those words. Maybe in the back of their head they’re thinking that, but not in the forefront.
Nolan Johnson: It makes an interesting spin.
Korf: Yes. It’s a good, new way of thinking if you’re trying to lead the industry a little bit. It would be great to get people thinking about it more.
Johnson: This is yet another place to shave your margins, be more efficient, make more money, and release capacity to the whole industry.
Korf: From a cost standpoint? Absolutely, it’s true. You must go to the next level of expensive technology for the line width and space and/or interconnects, vias. It could be very true. I had a design one time, and the customer had one blind via, one laser via, on the whole board. I said, “We can make that a through-hole and save you 20%.” He says, “No, I need it.” I said, “Okay, it’s your money. We’ll make it for you.” Conservation is an interesting topic. How can we save money by using less material, changing the way we do layers and stackups?
Realistically, material conservation isn’t something that I’ve heard come up much at all; it’s usually more talk about performance and which technology you should use.
To read this entire conversation, which appeared in the August issue of Design007, click here.
Suggested Items
Global PCB Connections: Following DFM Rules Leads to Better Boards
12/18/2024 | Jerome Larez -- Column: Global PCB ConnectionsAs a PCB field applications engineer, ensuring smooth communication between PCB designers and fabricators is one of my frequent challenges. A critical part of that dialogue is design for manufacturing (DFM). Many designers, even experienced ones, often misunderstand or overlook important DFM considerations. They may confuse design rules with manufacturing minimums, leading to technically feasible designs that are difficult or costly to produce. In this column, I will clarify some common DFM guidelines and help designers understand the difference between “design rules” and “minimums” while sharing best practices that will simplify the production process and ensure the highest quality PCB.
Sayonara to the Last Standing Copper Foil Plant in North America
12/17/2024 | Marcy LaRont, I-Connect007In July 2021, PCB007 Magazine published an interview with Michael Coll and Chris Stevens of Nippon Denkai about the new acquisition by Nippon Denkai of the last-standing ED foil manufacturer in North America. The plant in Augusta, Georgia, was formerly owned by Oak Mitsui, Inc. and had been purchased by Nippon Denkai the previous March, after which significant investment was made with the expectation of providing more jobs.
SCHMID Group Unveils Enhanced InfinityLine H+ for Electroless Copper Deposition
12/16/2024 | SCHMID GroupThe SCHMID Group, a global leader in high-tech solutions for the electronics industry, proudly announces significant updates to its flagship InfinityLine H+ Electroless Cu system. Specifically designed for the production of high- performance advanced packaging applications using mSAP and SAP processes, the system reflects SCHMID’s expertise in horizontal electroless copper deposition.
OKI Develops PCB Technology with Stepped Copper Coin Insertion to Achieve 55 Times Better Heat Dissipation in Outer Space
12/12/2024 | BUSINESS WIREThe OKI Group printed circuit board (PCB) business company OKI Circuit Technology has successfully developed multilayer PCB technology with stepped copper coin insertion to achieve 55 times better heat dissipation compared to conventional PCB. The stepped copper coin is offered in two types, circular and rectangular, to suit the shape of the electronic component mounted on the PCB. OTC is working to develop mass-production technologies with the aim of introducing PCBs incorporating this new technology into markets for compact devices or devices used in outer space or other environments where air cooling technology cannot be used.
Fresh PCB Concepts: PCB Plating Process Overview
12/12/2024 | Team NCAB -- Column: Fresh PCB ConceptsIn this installment of Fresh PCB Concepts, Mike Marshall takes the helm stating: PCBs have been the platform for the interconnection of electronic components for decades. Because of process costs and other constraints, such as mechanical properties or size limitations of the alternatives, PCBs will remain the standard low-cost interconnection technology. Rapidly increasing performance and functionality requirements of wireless and high-speed devices have challenged the development and implementation of new manufacturing solutions.