-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Stop Over-specifying Your Materials
May 25, 2023 | I-Connect007 Editorial TeamEstimated reading time: 3 minutes
Columnist Kelly Dack has had a pretty wide range of experiences. As a PCB designer, he has sat behind the desk at an NPI company, an OEM, a fabricator, and now an EMS provider. We asked him to share a few thoughts on the materials selection process and how it could be improved.
Kelly also explains how overly zealous PCB designers make things too complicated by over-specifying their materials, which leads to confusion once the board goes to volume production overseas. Are you over-constraining your material choices?
Andy Shaughnessy: Kelly, what is your process for material selection? Walk us through it.
Kelly Dack: Sure. I actually wrote a guideline for our customers that explains the material selection process. As mentioned, over-specification in the EMS realm is rampant and problematic from the standpoint of scaling products to volume overseas. This guide has a section on laminated materials that includes a simple, tried-and-true material specification. It says, “Materials: laminated glass epoxy resin type FR-4 series or equivalent per IPC-4101 with a Tg of greater than or equal to xxx.” This is a number that we can modify. We say, for instance, 170°C, and a Td (time to delamination) temperature of greater than 3XX°C. Those are all movable numbers that designers can edit.
That’s how we specify our laminate materials for printed circuit boards, unless the performance criteria dictates that it needs to go further and get more specific—for example, high-performance signal integrity constraints, impedance control, or exotic materials. But otherwise, FR-4 laminates cover 85–95% of our customers’ design requirements.
Shaughnessy: Where do designers typically go to find this information? What documents or guidelines should they use?
Dack: Many designers use their company’s documentation template or go to their elders and learn through knowledge that has been passed down. I just went through a bunch of our customers’ designs and fabrication drawings, and I found plenty of examples of customer material specification. Many of them call out a specific IPC-4101 slash number, and it’s usually the same slash number each time. It’s either 4101/26 or /21.
Shaughnessy: IPC has said that slash sheets were not ever meant for designers to use; they’re mainly a way for PCB supplier purchasing and marketing departments to communicate with buyers.
Dack: I’m glad to hear that confirmation as it was my understanding as well. This all came from the MIL-S-13949 spec back in the mil-spec days, most of which has been replaced by IPC standards. But we are seeing some of our customers’ designs specifying laminates by using slash numbers and I get the feeling it’s just because of tribal knowledge. If you look at most of the designs, they appear to be basic, not really requiring a specific material. The board would work fine with a generic glass-epoxy laminate because it has no impedance control or performance criteria. We just print and etch some copper onto it, create a circuit, and it moves electrons.
It’s usually only when we get into the super high-speed design in the gigahertz range where we have to start thinking about loss tangents and permittivities. Here’s the challenge: How much do you constrain? If you’re building your PCB design down at the local prototype shop, which will build a board any way you want, everybody seems fat and happy. But when you want to build 1 million boards, you must introduce a low-cost constraint because you can’t pay $1,000 a board and make a profit. You scale to volume to get cost savings. To realize maximum cost savings, this has always been done offshore. But designers must realize that offshore suppliers don’t have access to all the materials and capabilities that U.S. prototype companies have. Over-specification of laminate materials by composition, performance characteristics, or a trademarked source creates a terrible, but avoidable ordering situation, putting quotes on hold every single day. The simple fact is that it causes our offshore PCB suppliers to request and obtain approval for material substitutions before they can proceed.
To read this entire conversation, which appeared in the May 2023 issue of Design007 Magazine, click here.
Suggested Items
Growth Unfolds: The First of STARTEAM’s Trio of Factories Set to Expand
12/05/2024 | STARTEAM GLOBALSTARTEAM is thrilled to share news of our upcoming 3-step expansion at JST, with each step adding 50,000m² per month which began on May 27, 2024. This carefully planned extension is designed to significantly increase our production capacity and expand our talented team. Currently, our production space covers 30,000m². Through this expansion, we are setting our sights on incrementally increasing our capacity from 70,000m²/month to a remarkable 130,000m²/month.
Connect the Dots: Designing for Reality: Strip-Etch-Strip
12/05/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we focused on pattern plating. At this point, we are close to completing our boards and ready for the strip-etch-strip (SES) process. By this stage of the manufacturing process, we have laminated all the internal layers together, drilled the through-holes, applied the image to the external layers through photoresist, plated the copper in those channels to beef up the copper thickness for traces, pads, and through-holes, added a layer of electrolytic tin over the top of that copper to protect it during subsequent stages of production.
Fresh PCB Concepts: PCB Design Essentials for Electric Vehicle Charging
11/27/2024 | Team NCAB -- Column: Fresh PCB ConceptsElectric vehicles (EVs), powered by electricity rather than fossil fuels, are transforming transportation and reducing environmental impacts. But what good is an EV if it can't be easily charged? In this month's column, Ramon Roche dives into the role of printed circuit boards (PCBs) in electric vehicle charging (EVC)—and the design considerations.
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.