Design for Profitability: Avoiding Fabrication Issues and Minimizing Costly Revisions


Reading time ( words)

Note that I use the term “design for profitability,” or DFP, as opposed to any of the other acronyms such as DFM (design for manufacturability), DFT (design for test), or DFA (design for assembly). I’m taking this approach because it really all comes down to profit, doesn’t it?

Designers have the power to design profit into the board, or, conversely, inadvertently increase costs and remove profit from the PCB. In this article I am going to go over just a few of the challenges that fabricators routinely face and some typical solutions, especially solutions that can affect your bottom line.

I will start with DFM. Generally, this is the first stage for prototyping and DFM depends greatly on the capabilities of your chosen fab shop. Some designs are finished with autorouters after the critical traces have been hand-placed. It is at this point that unintended issues can arise between design and fab.

An example of this is same net-spacing violations where a track may “double back” near a surface mounted component, creating same-net spacing violations (Figure 1). Whereas the software does not see these as legit violations because they are same net, a fabricator knows that any features creating spaces below 0.003” can easily flake off at the image stage and create havoc elsewhere in the form of shorts. Edit time must be taken at the fab stage when these same-net spacing violations occur and the slivers eliminated. Some CAM software packages have a sliver fill option, but again this requires additional edit time at CAM.

Read the full article here.


Editor's Note: This article originally appeared in the March 2013 issue of The PCB Design Magazine.

Share

Print


Suggested Items

‘The Trouble with Tribbles’

06/17/2021 | Dana Korf, Korf Consultancy
The original Star Trek series came into my life in 1966 as I was entering sixth grade. I was fascinated by the technology being used, such as communicators and phasers, and the crazy assortment of humans and aliens in each episode. My favorite episode is “The Trouble with Tribbles,” an episode combining cute Tribbles, science, and good/bad guys—sprinkled with sarcastic humor.

IPC-2581 Revision C: Complete Build Intent for Rigid-Flex

04/30/2021 | Ed Acheson, Cadence Design Systems
With the current design transfer formats, rigid-flex designers face a hand-off conundrum. You know the situation: My rigid-flex design is done so now it is time to get this built and into the product. Reviewing the documentation reveals that there are tables to define the different stackup definitions used in the design. The cross-references for the different zones to areas of the design are all there, I think. The last time a zone definition was missed, we caused a costly mistake.

Why We Simulate

04/29/2021 | Bill Hargin, Z-zero
When Bill Hargin was cutting his teeth in high-speed PCB design some 25 years ago, speeds were slow, layer counts were low, dielectric constants and loss tangents were high, design margins were wide, copper roughness didn’t matter, and glass-weave styles didn’t matter. Dielectrics were called “FR-4” and their properties didn’t matter much. A fast PCI bus operated at just 66 MHz. Times have certainly changed.



Copyright © 2021 I-Connect007. All rights reserved.