-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRigid-flex: Designing in 3D
In this month’s issue, our expert contributors share their best tips, tricks and techniques for designing rigid-flex circuits. If you’re a rigid board designer considering moving into the 3D world of rigid-flex, this issue is just what the doctor ordered!
Simulation, Analysis, and AI
Getting today’s designs “right the first time” is critical, especially with costly advanced PCBs. Simulation and analysis software tools can help you in the fight to eliminate respins. They’re not magical, but they can predict the future of your design.
Advanced, Complex & Emerging Designs
This month, our contributors focus on designing PCBs with advanced, complex and emerging technologies. We investigate design strategies for boards that are on the cutting edge of technology, or crazily complex, or so new that designers are still writing the rules as they go.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
Effective Decoupling Radius
May 6, 2015 | Kirk Fabbri, KPST Engineering ConsultingEstimated reading time: 1 minute

Power distribution networks (PDN) are becoming an important topic. Many engineers are finding that properly designing the power supplies and providing adequate decoupling for devices is a challenge, especially since devices are switching faster and dimensions are shrinking. Engineers often focus on discrete decoupling capacitors placed local to switching devices in hopes of providing the required capacitance for these high current demands. One of the more overlooked items of the power distribution system is the PCB, and how it contributes to the power distribution system’s ability to decouple the switching devices. The following experiment will outline a basic principle that should be in mind when designing a stack-up and PDN.
Basic PDN Model
A basic PDN includes the voltage regulator model (VRM), the discrete decoupling capacitors, the PCB, and any on-die capacitance formed on the IC or device. Each one of these components could be written about separately, but it is the PCB that will be focused on; specifically the effective decoupling radius.[2]
When a device is active, it will require current. The type of device (process size), load on the I/O drivers, and how the device is operated, all have an effect on the current required, among others. When the device demands current, it flows through the complex impedance of the PDN and causes a ripple voltage to appear. This transient current is drawn from a variety of sources including the local on-die decoupling capacitance, the PCB, the discrete capacitors, and finally the VRM.[1] The edge rate of this switching current is extremely important when trying to calculate how effective the PDN will be in suppressing the ripple voltage. The switching edge can be dissected into a variety of harmonic sine waves at decreasing amplitude described by a Fourier series equation. It is here that we discover the importance of the PCB, and its role in the PDN.
The simplest way to represent a PCB is a distributed RLC network. Capacitance is formed by the copper layers and the dielectric between them. Inductance is formed by the loop area between the layers, and the resistance is formed by the cross sectional area and length of the copper planes.
To read this article from the April 2015 issue of The PCB Design Magazine, click here.
Suggested Items
UHDI Fundamentals: A Primer on UHDI
09/28/2023 | Anaya Vardya, American Standard CircuitsThere has always been pressure to reduce line and space as we have seen the bleeding edge technology go from 8 mils to 5 mils and then to 3 mils. The difference between “then” and “now” is that the prior advancements, for the most part, used the same processes, chemistry and equipment going from 8 mils to 3 mils. But going from 3 mil to sub 1 mil trace and space is a quantum leap in printed circuit board (PCB) technology that requires a whole new set of processes and materials.
Trouble in Your Tank: Processes to Support IC Substrates and Advanced Packaging, Part 4
09/28/2023 | Michael Carano -- Column: Trouble in Your TankIn a previous column, the critical process of desmear and its necessity to ensure a clean copper surface connection was presented. Now, my discussion will focus on obtaining a void-free and tightly adherent copper plating deposit on these surfaces. After the desmear process, the task is to insure a continuous, conductive, and void-free deposit on the via walls and capture pad. Today, there are several processes that can be utilized to render vias conductive.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.
MKS’ Atotech to Participate in IPCA Expo 2023
09/14/2023 | MKS’ AtotechMKS’ Atotech, a leading surface finishing brand of MKS Instruments, will participate in the upcoming IPCA Expo at Bangalore International Exhibition Centre (BIEC) and showcase its latest PCB manufacturing solutions from September 13 – 15.
Designer’s Notebook: DFM Principles for Flexible Circuits
09/14/2023 | Vern Solberg -- Column: Designer's NotebookFlexible circuit applications can be as basic as furnishing electrical interconnect between two conventional circuit board assemblies, or to prove a platform for placing and interconnecting electronic components. During the planning and pre-design phase of the flexible circuit, there will be several material and process related questions that need to be addressed. Most flexible circuit fabricators welcome the opportunity to discuss their customers’ flexible circuit objectives prior to beginning the actual design process.