-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
TTM: Consult Fabricators Early for PCB Designs
July 2, 2015 | Andy Shaughnessy, PCBDesign007Estimated reading time: 6 minutes

Recently, I attended the Designers Council “Lunch and Learn” at Broadcom’s office in Orange County, California. One of the speakers at this event was Julie Ellis, a field applications engineer with TTM Technologies. She sat down with me to discuss her presentation and some of the ways fabricators can assist PCB designers.
Andy Shaughnessy: Julie, why don't you give us a little bit of background about yourself and your history in the industry?
Julie Ellis: I have a degree in electrical engineering and worked as a student and then as an engineer at Hughes Aircraft, which gave me great hands-on experience in RF/analog electronics and coaxial cable design, assembly, and test. After Hughes, I pursued technical sales as a manufacturer’s rep for semiconductors and circuit boards and represented Nan Ya PCB Corp. for ten years before rounding out my career in contract electronics manufacturing as a sales engineer and then global PCB commodity manager. I managed a fabricator’s ISO 9001 quality system and was a technical consultant and process and quality auditor for PCB, CM, and automotive customers before joining TTM.
Shaughnessy: I understand that you train inspectors?
Ellis: Yes. I'm a Certified IPC Trainer for acceptability of both circuit boards (IPC-A-600) and electronic assemblies (IPC-A-610). Untrained inspectors or clients cause tremendous schedule delays when they’re fearful of accepting a product that looks questionable to them, because they worry it could fail in the future. I really enjoy teaching students to understand the requirements and apply the standards to accept product with full confidence.
Shaughnessy: One thing the designers tell us in surveys is that they always want to know more about fab processes. They don’t get to visit board shops very often, if at all. If you can talk to the designers, what would say are a few things that they should do differently?
Ellis: Mainly, I would like to see them engage us, the field applications engineers, before they've started routing out their circuits. Multilayer PCB fabrication requires approximately 30 major process steps, including photoimaging and developing, etching, stripping, lamination, drilling, plating, and screening. Each process has physical or equipment limitations (tolerances) which can negatively impact the product yields or long-term reliability if the design is not optimized. We evaluate the attributes of the design to establish the guidelines for the designer, so their requirements don’t exceed process limitations when they go to fab. We will also create a preliminary stack-up to confirm their requirements for overall and Cu thickness, layer count, controlled impedance, drill and pad sizes can be met.
Secondly, I encourage them to visit one of our sites for a PCB 101 presentation and factory tour. We introduce the processes in a great visual presentation, so they understand what they’re seeing on the production floor.
Shaughnessy: If they get involved with the fabricator earlier, the earlier the better?
Ellis: Definitely! It's a lot easier to modify a design before – rather than after - they've done all the work routing.
Shaughnessy: Today, during your talk, you mentioned a really fascinating new technology that TTM has developed: The Next Generation SMV. Can you tell us a little bit about that?
Ellis: Sure. SMV® is the abbreviation for Stacked MicroVias, a technology which facilitates high density interconnects layer to layer by stacking laser microvias during sequential lamination cycles. SMV starts with a center lamination (sublam) that is drilled, plated, and etched and adds a new set of outer layers with each lamination cycle. A board with 3 layers of SMVs will travel around the production floor through lamination, drill, plate, and etch 3 times, which is very time-consuming.
NextGen-SMV™ also provides Z-axis connectivity from – and to – any layer, but in a single lamination cycle. Specially prepped single-sided cores are laser drilled and filled with copper conductive paste, stacked one on top of another from the bottom up and laminated in our Single Lamination Parallel Process, SLPP™. The pre-filled microvias don’t require plating or additional lamination cycles, so NextGen-SMV technology can be used when extremely fast turn time is required. And because very thin dielectrics are used, NextGen boards are sometimes thinner than standard ones.
Shaughnessy: So these technologies could be used under a micro BGA with lots of I/Os?
Ellis: Exactly. When we look at the grid array under a BGA, we have to consider how we are going to create conductive connections to every circuit board pad corresponding to the grid. The outer pads can be simply routed on the component layer, but when there’s not enough space to run traces between the pads, we have to use an additional layer for each inside row. As each row is connected, it opens routing for the next row.
Shaughnessy: It looks like it would be really hard to fabricate. I mean, if each row of the array pattern requires its own routing layer, it must be tough to build.
Ellis: It significantly increases complexity and requires enabling equipment and processing. Laser drills have to be used for microvias. And registration has to be dead-on, or the lasers can partially miss their landing pads and drill through the layers below. So we use Laser Direct Imaging, or LDI. And to plate these small holes, we developed reverse pulse plating processes with our plating chemistry supplier to assure continuous plating into single-ended (microvias that are drilled down and stop at the next layer) and high aspect ratio (drill depth:drill diameter) through-holes. It’s interesting to note that standard through-hole capability aspect ratio is 10:1, but because single-ended holes are so much more difficult to plate, microvia standard aspect ratio is preferred 0.5:1.Page 1 of 2
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/18/2025 | Nolan Johnson, I-Connect007It may be the middle of the summer, but the news doesn’t quit, and there’s plenty to talk about this week, whether you’re talking technical or on a global scale. When I have to choose six items instead of my regular five, you know it’s good. I start by highlighting my interview with Martyn Gaudion on his latest book, share some concerning tariff news, follow that up with some promising (and not-so-promising) investments, and feature a paper from last January’s inaugural Pan-European Design Conference.
Elephantech Launches World’s Smallest-Class Copper Nanofiller
07/17/2025 | ElephantechJapanese deep-tech startup Elephantech has launched its cutting-edge 15 nm class copper nanofiller – the smallest class available globally. This breakthrough makes Elephantech one of the first companies in the world to provide such advanced material for commercial use.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.