-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRigid-flex: Designing in 3D
In this month’s issue, our expert contributors share their best tips, tricks and techniques for designing rigid-flex circuits. If you’re a rigid board designer considering moving into the 3D world of rigid-flex, this issue is just what the doctor ordered!
Simulation, Analysis, and AI
Getting today’s designs “right the first time” is critical, especially with costly advanced PCBs. Simulation and analysis software tools can help you in the fight to eliminate respins. They’re not magical, but they can predict the future of your design.
Advanced, Complex & Emerging Designs
This month, our contributors focus on designing PCBs with advanced, complex and emerging technologies. We investigate design strategies for boards that are on the cutting edge of technology, or crazily complex, or so new that designers are still writing the rules as they go.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
Beyond Design: Faster than a Speeding Bullet
March 9, 2016 | Barry Olney, In-Circuit DesignEstimated reading time: 1 minute

In a previous Beyond Design column, Transmission Lines, I mentioned that a transmission line does not carry the signal itself, but rather guides electromagnetic energy from one point to another. The speed of a computer does not depend intrinsically on the speed of electrons, but rather on the speed of energy transfer between electronic components. Electron flow in a multilayer PCB is extremely slow—about 10 mm per second—so, how does the signal travel so fast, how fast does it actually transfer information and what are the limitations?
In optical communications, electrons don’t carry the signal—photons do. And we all know that photons travel at the speed of light. So surely, optical fibers must transmit information much faster than copper wires or traces on a multilayer PCB? Actually, photons and electrons transmit data at the same speed. The limiting factor is the relative permittivity (dielectric constant) of the medium in which the signal propagates.
An optical fiber is a cylindrical dielectric waveguide made of low-loss materials such as fused silica glass. It has a central core in which light is guided, and embedded in an outer cladding of slightly lower refractive index. The silica glass used has a dielectric constant (Er or Dk) = 3.78 @25GHz. Whereas, for instance, Panasonic’s new Megtron 7, low Dk, glass PCB laminate has an Er = 3.3 at the same frequency.
To read this entire article, which appeared in the February 2016 issue of The PCB Design Magazine, click here.
Suggested Items
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.
MKS’ Atotech to Participate in IPCA Expo 2023
09/14/2023 | MKS’ AtotechMKS’ Atotech, a leading surface finishing brand of MKS Instruments, will participate in the upcoming IPCA Expo at Bangalore International Exhibition Centre (BIEC) and showcase its latest PCB manufacturing solutions from September 13 – 15.
Designer’s Notebook: DFM Principles for Flexible Circuits
09/14/2023 | Vern Solberg -- Column: Designer's NotebookFlexible circuit applications can be as basic as furnishing electrical interconnect between two conventional circuit board assemblies, or to prove a platform for placing and interconnecting electronic components. During the planning and pre-design phase of the flexible circuit, there will be several material and process related questions that need to be addressed. Most flexible circuit fabricators welcome the opportunity to discuss their customers’ flexible circuit objectives prior to beginning the actual design process.
Elementary, Mr. Watson: Flex Designs—The Future and Beyond
09/14/2023 | John Watson -- Column: Elementary, Mr. WatsonElectronics are continually evolving, driven by innovations in printed circuit board technology. Flexible PCBs have emerged as a revolutionary force, reshaping the PCB industry and influencing the design and functionality of countless electronic devices. Some believe that flexible PCBs are a relatively newer technology, but as we will see, that is not true. Since I’m an instructor, here’s a short history lesson on how we got here and what we can expect.
IDTechEx Asks Where Flexible Hybrid Electronics Add the Most Value
09/11/2023 | PRNewswireCan digital and/or high throughput manufacturing be applied to circuit boards? Can stretchable electronics be produced without sacrificing processing capabilities?