-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Failure Modes and Effects Analysis (FMEA)
April 6, 2016 | Happy HoldenEstimated reading time: 12 minutes

What is FMEA?
Failure modes and effects analysis (FMEA) is a systematic process to evaluate failure modes and causes associated with the design and manufacturing processes of a new product. It is somewhat similar to the potential problem analysis (PPA) phase of the Kepner-Tregoe program. Here is a list of activities for a FMEA:
1. Determine potential failure modes of each component or subassembly and causes associated with the designing and manufacturing of a product.
2. Identify actions which could be eliminate or reduce the chance of a potential failure occurring.
3. Document the process and give each mode a numeric rating for frequency of occurrence, criticality, and probability of detection.
4. Multiply these three numbers together to obtain the risk priority number (RPN), which is used to guide the design effort to the most critical problems first.
Two aspects of FMEA are particularly important: a team approach and timeliness. The team approach is vital because the broader the expertise that is brought to bear on making and assigning values to the failure mode list, the more effective the FMEA will be.
Timeliness is important because FMEA is primarily a preventive tool, which can help steer design decisions between alternatives before failure modes are designed-in, rather than redesigning after the failure occurs. FMEA is equally applicable to hardware or software, to components or systems.
Comparison to FTA
Another similar process is fault tree analysis (FTA). While FMEA is a bottom-up approach, FTA is top-down. FTA starts with the assumption of a system failure mode, and then works down through the system block diagram to look for possible causes of that mode.
Thus, FTA requires fairly complete, detailed information about the system, and is most effective after the system is well-defined. (FTA could be performed, in a limited way, on alternative system concepts; this could be used to help decide the best of several alternatives.) A separate FTA must be performed for each system failure mode.
FTA and FMEA are complimentary. Whenever possible, both should be used. For practical reasons, FTA should be limited to the really serious system-level failure modes, such as those involving safety or permanent system damage. FMEA can be used at the component, subassembly, and module level, to help optimize those modules. There are excellent discussions and examples of FTA in References 2 and 4, and it will not be discussed further in this column.
Benefits of FMEA
The RPN calculated by FMEA allows prioritization of the failure mode list, guiding design effort to the most critical areas first. It also provides a documentary record of the failure prevention efforts of the design team, which is helpful to management in gauging the quality and extent of the effort, to production in solving problems which occur despite these efforts, and to future projects which can benefit from all the work and thinking that went into the failure mode and cause lists.
Eliminating potential failure modes has both short term and long term benefits. The short term benefit is most often recognized because it represents savings of the costs of repair, retest, and downtime, which are objectively accountable. The long term benefit is much more difficult to measure, since it relates to the customer satisfaction or dissatisfaction with the product, and perception of its quality.
FMEA supports the design process by:
- Aiding in the objective evaluation of alternatives during design
- Increasing the probability that potential failure modes and their effects on system operation have been considered during design
- Providing additional information to aid in the planning of thorough and efficient test programs
- Developing a list of potential failure modes ranked according to their probable effect on the customer, thus establishing a priority system for design and test
- Providing an open, documented format for recommending and tracking risk-reducing actions
- Identifying known and potential failure modes which might otherwise be overlooked
- Exposing and documenting the ways a system can fail, and the effects of such failures
- Detecting primary but often minor failures which may cause serious secondary failures or consequent damage
- Detecting areas where "fail safe" or "fail soft" features are needed
- Providing a fresh viewpoint in understanding a system's functions
The uses of a FMEA report include:
- A formal record of the safety and reliability analysis and planning, to satisfy customers or regulatory agencies
- Evidence in litigation involving safety or reliability
- Design of diagnostic routines or built-in tests
- A basis for creating trouble-shooting procedures
- A means to consider and prevent manufacturing defects
- Problem follow-up and corrective action tracking
- A future reference to aid in analyzing field failures, evaluating design changes, or developing improved designs
Page 1 of 5
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.