-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueThe Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
Advanced Packaging and Stackup Design
This month, our expert contributors discuss the impact of advanced packaging on stackup design—from SI and DFM challenges through the variety of material tradeoffs that designers must contend with in HDI and UHDI.
Rules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Quiet Power: Dynamic Models for Passive Components
May 11, 2016 | Istvan Novak, OracleEstimated reading time: 1 minute
A year ago, my Quiet Power column described the possible large loss of capacitance in multilayer ceramic capacitors (MLCC) when DC bias voltage is applied. However, DC bias effect is not the only way we can lose capacitance. Temperature, aging, and the magnitude of the AC voltage across the ceramic capacitor also can change its capacitance.
Finally, the initial tolerance needs to be considered as well. In the worst case, we may lose up to 90% of the capacitance for an X5R capacitor, and even for an X7R capacitor. This column will show you the details and also how the most advanced manufacturers are helping the users with new simulation models to take these effects into account.
As an actual example, let us look at one of the capacitors that was extensively tested, where 1uF 0603-size 16V capacitors were tested from various vendors. We further assume that we want to use the part on a 12V supply rail, where the AC noise is low (this will be important later when we take the AC bias dependence into account). Some of the samples were chosen with X5R, some with X7R temperature characteristics. As showed with actual test data , X7R capacitors are sometimes worse for DC bias sensitivity than X5R parts.
If we take the part from Vendor B (labeled B7) in Figure 1, we see that at 12V DC bias we can lose 60% or 70% of the capacitance, dependent on which way the DC bias changes. But when we need to consider the worst-case capacitance loss, we have to consider the cumulative effect of all of the following factors:
- Initial tolerance
- Temperature effect
- DC bias effect
- AC bias effect
- Aging
The sample had +-10% initial tolerance. The X7R temperature characteristics comes with an additional +-15% tolerance window for the temperature variation.
To read this entire article, which appeared in the March issue of The PCB Design Magazine, click here.
Suggested Items
Bohemia Interactive Simulations, Rheinmetall Announce Strategic Partnership to Enhance Defense Simulation Technologies
01/08/2025 | BAE SystemsBohemia Interactive Simulations (BISim), a wholly-owned subsidiary of BAE Systems, Inc., and renowned provider of advanced simulation and training software solutions, and Rheinmetall AG, a leader in defense and security technologies, have announced the start of a strategic collaboration.
Rheinmetall, Hologate Sign Strategic Cooperation
12/03/2024 | RheinmetallDüsseldorf-based Rheinmetall AG, a leading company in the field of defense and security technologies, and Hologate, the world's leading provider of sophisticated Extended Reality (XR) solutions in the field of simulation and entertainment, intend to work closely together in the future to develop innovative simulation solutions.
iNEMI HDI Socket Warpage Prediction and Characterization Webinar
11/15/2024 | iNEMIHigh-density interconnect (HDI) sockets, primarily designed for CPUs and GPUs, are shifting toward larger form factors as the number of interconnect pins increases.
Siemens Strengthens Leadership in Industrial Software and AI with Acquisition of Altair Engineering
10/31/2024 | SiemensSiemens has signed an agreement to acquire Altair Engineering Inc., a leading provider of software in the industrial simulation and analysis market.
Duality AI Contracts with NASA JPL for Phase II of DARPA RACER Program
09/13/2024 | BUSINESS WIREDuality AI, the company behind Falcon, a digital twin simulation platform, today announced an agreement with NASA’s Jet Propulsion Laboratory (NASA JPL) in Pasadena to continue its work on Defense Advanced Research Projects Agency’s (DARPA’s) Robotic Autonomy in Complex Environments with Resiliency program (RACER).