-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Tim’s Takeaways: The Basics of Hybrid Design, Part 3
June 16, 2016 | Tim Haag, Intercept TechnologyEstimated reading time: 2 minutes

In the first two parts of this series, we discussed the basics of hybrid design from the PCB designer’s perspective, and this month we will conclude that discussion.
We are seeing more and more of our customers exploring the world of hybrid design, and we are getting new customers for whom hybrid design is their sole focus. The world of hybrid design is growing, and we have lots of hybrid-specific functionality built into our software that helps designers meet and conquer the unique hybrid design requirements that they are faced with.
And yet many designers out there (and I used to be one of them) have no idea what is meant when people start talking about hybrid design. It is therefore not uncommon for designers to avoid the subject directly while hoping to pick up little cues and pointers from others indirectly so that they are no longer in the dark. If that description sounds uncomfortably close to where you are at, then read on. My hope is that this three-part series will help you by serving as a basic introduction into the world of hybrid design.
If you haven’t had a chance to read the first two parts in this series, please go back to the last two months and take a look at them if you can. To summarize, however, we discussed in the first column the basic structure of hybrid designs and the benefits they offer over standard PCBs. In the second column we discussed some of the similarities and differences in CAD applications for the design of hybrids and how hybrid designs and their layer stackups are setup. We also discussed the routing of conductors (wires), and the creation of area fills and power planes. We continued from there talking about the creation of dielectric layers and their similarities and differences to fills and planes. Next we introduced the concept of cross-over dielectric layers, which is unique to hybrid designs, and how they are used. Finally we finished up with an explanation of how vias are created and managed in hybrids. Now, let’s talk about components.
The selection of components in a hybrid design is influenced by the operating temperature of the working design. Higher operating temperatures will require components that can withstand those extremes while at the same time necessitating a different amalgamation of soldering elements for manufacturing.
Passive components will use packaged parts while active components will use bare dies (no packaging). This is something different for the PCB designer who would rarely see a bare die used on a board design. Packaged active components can be used on a hybrid, but this is dependent upon the operating temperature of the design. And by using bare dies, a hybrid design realizes the benefits of shorter circuit paths, smaller size, and better thermal conditions for the device as it is glued directly to the substrate making for a better heat sink.
To read this entire article, which appeared in the May 2016 issue of The PCB Design Magazine, click here.
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.