-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueCreating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Tim’s Takeaways: The Basics of Hybrid Design, Part 3
June 16, 2016 | Tim Haag, Intercept TechnologyEstimated reading time: 2 minutes

In the first two parts of this series, we discussed the basics of hybrid design from the PCB designer’s perspective, and this month we will conclude that discussion.
We are seeing more and more of our customers exploring the world of hybrid design, and we are getting new customers for whom hybrid design is their sole focus. The world of hybrid design is growing, and we have lots of hybrid-specific functionality built into our software that helps designers meet and conquer the unique hybrid design requirements that they are faced with.
And yet many designers out there (and I used to be one of them) have no idea what is meant when people start talking about hybrid design. It is therefore not uncommon for designers to avoid the subject directly while hoping to pick up little cues and pointers from others indirectly so that they are no longer in the dark. If that description sounds uncomfortably close to where you are at, then read on. My hope is that this three-part series will help you by serving as a basic introduction into the world of hybrid design.
If you haven’t had a chance to read the first two parts in this series, please go back to the last two months and take a look at them if you can. To summarize, however, we discussed in the first column the basic structure of hybrid designs and the benefits they offer over standard PCBs. In the second column we discussed some of the similarities and differences in CAD applications for the design of hybrids and how hybrid designs and their layer stackups are setup. We also discussed the routing of conductors (wires), and the creation of area fills and power planes. We continued from there talking about the creation of dielectric layers and their similarities and differences to fills and planes. Next we introduced the concept of cross-over dielectric layers, which is unique to hybrid designs, and how they are used. Finally we finished up with an explanation of how vias are created and managed in hybrids. Now, let’s talk about components.
The selection of components in a hybrid design is influenced by the operating temperature of the working design. Higher operating temperatures will require components that can withstand those extremes while at the same time necessitating a different amalgamation of soldering elements for manufacturing.
Passive components will use packaged parts while active components will use bare dies (no packaging). This is something different for the PCB designer who would rarely see a bare die used on a board design. Packaged active components can be used on a hybrid, but this is dependent upon the operating temperature of the design. And by using bare dies, a hybrid design realizes the benefits of shorter circuit paths, smaller size, and better thermal conditions for the device as it is glued directly to the substrate making for a better heat sink.
To read this entire article, which appeared in the May 2016 issue of The PCB Design Magazine, click here.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/09/2025 | Andy Shaughnessy, Design007 MagazineTrade show season is wrapping up as we head into summer. Where has the time gone? I hope you all get the chance to take a vacation this year, because I know you’ve earned one. Speaking of which, when was my last vacay? If I can’t remember, it’s probably time for one. It’s been a busy week in electronics, with fallout from the back-and-forth on tariffs taking up most of the oxygen in the room. We have quite an assortment of articles and columns for you in this installment of Must-Reads. See you next time.
Imec Coordinates EU Chips Design Platform
05/09/2025 | ImecA consortium of 12 European partners, coordinated by imec, has been selected in the framework of the European Chips Act to develop the EU Chips Design Platform.
New Issue of Design007 Magazine: Are Your Data Packages Less Than Ideal?
05/09/2025 | I-Connect007 Editorial TeamWhy is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal data package for your design.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.