-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
PCB Designers Notebook: Embedding Components, Part 2
July 31, 2017 | Vern Solberg, ConsultantEstimated reading time: 1 minute

Note: Part 1 of this column appeared in the June 2017 issue of The PCB Magazine.
Technology and processes for embedding capacitor and inductor elements rely on several unique methodologies. Regarding providing capacitor functions, IPC-4821 defines two methodologies for forming capacitor elements within the PCB structure: laminate-based (copper-dielectric-copper) or planar process and non-laminate process using deposited dielectric materials.
Distributed (planar) capacitors
Considered the simplest solution and commonly used to replace discrete power supply decoupling capacitors the planar capacitors utilize closely spaced power and ground planes separated by a thin dielectric layer. The dielectric can be a layer of the glass-reinforced epoxy material, a thin layer of non-reinforced polymer, or a polymer sheet material filled with ceramic powder. This technique will provide significant capacitance and delivers very low inductance. The capacitance range for planar capacitors is 1pF to 1mF, dependent on the dielectric constant, material thickness and area.
Because the planar capacitance is proportional to the dielectric thickness between the power and ground planes, thin dielectrics are preferred. This will increase planar capacitance while reducing planar spreading inductance and minimizes overall board thickness. The reduction of planar spreading inductance also results in a lowering the impedance path while increasing the effectiveness of discrete capacitances.
The total capacitance of the power and ground pair is determined by the effective common (overlapping) area of the copper electrodes. This area, times the capacitance density, represents the total capacitance.
To read this entire article, which appeared in the June 2017 issue of The PCB Design Magazine, click here.
Suggested Items
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.