-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Book Excerpt: Power Integrity by Example
June 10, 2020 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes

The following is an excerpt from The Printed Circuit Designer's Guide to... Power Integrity by Example, written by Fadi Deek of Mentor, a Siemens Business. In this free eBook, Deek addresses problematic issues within electronic transmissions, and presents a variety of simulations and analyses in every chapter.
In our first book, The Printed Circuit Designer's Guide to... Signal Integrity by Example, we discussed some of the important signal integrity issues that a signal might face as it propagates from transmitter to receiver. In this sequel, we discuss the power integrity of the power distribution network, or PDN. One of the main requirements of a PDN, as defined by the IEEE EMC symposium, is to provide a low-impedance reference path to signals. A high impedance of a PDN yields inadequate current delivery to the receiver. Thus, this can be a root cause for signal integrity issues, such as:
• Voltage ripples
• Jitter/timing violations and false switching
• Bit errors
• Noise propagation throughout the board
In reality, a PDN is the path or interconnect from the voltage regulator model, or VRM (source of power supply), to the integrated circuits, or ICs (active devices), that consists of boards and packages with planes, routed traces, and decoupling capacitors. The scope of this book focuses on controlling the impedance of the PDN at the PCB level.
Though there are a few general design guidelines that will help to achieve a low impedance, those guidelines can rarely be followed in their entirety. This is why it’s so important to understand how the components of a PDN affect the impedance profile.
This book starts with an analysis of one of the main components of the PDN—the cavity. The impedance profile of the cavity is examined in the frequency domain in the form of Z-parameters. Series and parallel resonance occurrences are discussed and formulas are given to calculate their location.
Next, elements of the cavity, such as the VRM decoupling capacitors and stitching vias, are added one at a time to understand their influence on the impedance of the cavity. An important conclusion is made about how to make the cavity as transparent as possible for signals’ return paths. This step-by-step explanation provides the engineer with a firm understanding of what to expect when adding any of those elements. Having such a priori knowledge helps to efficiently design the PDN.
The final two chapters discuss the heavily-overlooked issue of coupling between signal vias passing through the cavity. At the high data rates of today’s designs, it is very easy to excite high-frequency resonant modes that are intrinsic to the geometry of a cavity. A signal loses energy to such high-frequency modes and can fall victim to coupling to them. Equipped with an understanding of this phenomenon, methods for suppressing such noise are provided.
In addition to this book, a detailed explanation of power integrity analysis can be found in the book Principles of Power Integrity for PDN Design— Simplified: Robust and Cost Effective Design for High Speed Digital Products by Eric Bogatin and Larry Smith published by Prentice Hall in 2017.
To download your free copy of The Printed Circuit Designer’s Guide to…Power Integrity by Example, click here.
To visit the I-Connect007 library and check out the entire lineup of free eBooks, click here.
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
The Shaughnessy Report: Showing Some Constraint
07/14/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen we first decided to cover strategies for setting PCB design constraints, one designer we spoke with said, “They’re not really constraints; they’re more like guardrails that prevent your design from going off a cliff.”
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.