-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
HyperLynx: There’s an App for That
August 5, 2022 | I-Connect007 Editorial TeamEstimated reading time: 10 minutes
When we’re laying down power planes, we’re asking, “Do we have enough metal to carry the current needed, and will neckdowns cause problems due to excessive voltage drop?” The DC drop app will allow you to analyze and visualize current flow under steady state conditions, so you can quickly identify and correct potential problems.
When we’re designing an AC power delivery network (PDN), we’re placing decoupling capacitors, and we’re asking, “Do we have enough capacitors, with the right values, close enough to the devices they need to service?” The traditional approach to placing decoupling capacitors has often been called “sprinkle and pray,” which results in overdesign and higher manufacturing costs. Being able to determine how many capacitors are actually needed makes the process more reliable and frees valuable board space that would have been occupied by unnecessary capacitors.
Pulse response analysis considers a group of signals that should have nearly identical electrical characteristics to see if there are any outliers. This is first-order signal integrity; I don’t need the exact driver model; I just need a technology model with about the right impedance at about the right edge rate. That makes the setup and simulation process much simpler. I can quickly analyze a group of related signals (think DDR data or address bus) to see if anything stands out, then go from there.
Johnson: This is the “signal and power integrity for the average engineer” you’ve been talking about in past interviews?
Westerhoff: Right. It’s based on reframing the way we typically think about signal and power integrity. Typically, we’re told that signal integrity and power integrity need to be detailed, quantitative, and exact, down to the millivolt or picosecond. That results in a process that can only be performed by SI/PI experts. The analysis we perform with design apps is more of a qualitative approach. We’re running first-order analysis during layout to tune things as we lay them down, identifying and resolving obvious problems as we go. Remember, design apps aren’t trying to perform signoff analysis; we assume the normal signoff process still applies.
Regression apps are more what we typically consider as signal integrity because they’re specific and quantitative. They’re also different in that they are standards-based and focus on spec compliance instead of device-specific performance. It’s much easier to determine whether a channel is compliant with a spec because all you need is the layout database and which protocol you want to analyze it for; everything else is already known. Traditional serial channel analysis involves vendor IBIS-AMI models, which is a much more complicated and case-dependent proposition. Protocol compliance analysis is well-defined once you know the protocol, so it can be automated.
The extraction and electromagnetic modeling process for serial channel compliance is pretty complex, so this isn’t a “while you wait” process; it’s an automated, overnight run. Load the layout database at the end of the day, start the compliance app, and have a report ready for the next morning. That’s the workflow.
Setting up a regression app is more involved, so it can make sense to have an SI/PI expert set up the initial run and save that setup to a library. That makes sure that everything is configured correctly to ensure a correct final result. Once the setup is in the library, the designer can rerun the analysis as often as they need at the push of a button.
Johnson: How accurate are the results we’re talking about here? How well do HyperLynx Apps results compare to HyperLynx?
Westerhoff: Excellent question. As we said, signal and power integrity are traditionally all about accuracy. The important point here is that HyperLynx Apps are HyperLynx. We’ve just created a simpler front-end for specific tasks. We’re building on the infrastructure HyperLynx already has, so the accuracy and analytical capabilities are the same. In some cases, the app calls the automated flows that have existed in HyperLynx for some time now.
Johnson: What happens if a designer runs across a problem that they can’t resolve using the app?
Westerhoff: Good point. We’re giving PCB and hardware designers the ability to run analysis themselves, but the design problems can still be quite complex. They eventually will run into something that they can’t resolve, so then what? Remember that HyperLynx Apps use the same database and analytical methods as traditional HyperLynx. That means that when a designer runs analysis and gets stuck, the HyperLynx simulation setup and results already exist. An experienced user can open up the project with traditional HyperLynx and dig right in.
Johnson: The designer escalates the problem, so the SI/PI experts can take a look at it?
Westerhoff: Right, but the SI/PI experts get the problem handed to them on a silver platter, with a complete simulation setup and results available. It’s all ready to go.
Johnson: When will these HyperLynx Apps be available?
Westerhoff: We began shipping HyperLynx Apps with the 2.11 release this March. We’ve been working with select customers on this concept for a while, and we’ve just opened it up for general use.
Johnson: Thanks for speaking with me, Todd.
Westerhoff: Thank you, Nolan.
Additional content from Siemens Digital Industries Software:
Page 2 of 2Suggested Items
Molex Releases New Report on Strategies for Advancing Rugged, Reliable Connectivity in Modern Aerospace and Defense Applications
04/01/2025 | MolexMolex, a global electronics leader and connectivity innovator, has released a new report from AirBorn, a Molex company, which explores the unrelenting demands for constant, continuous connectivity to support the rigors of modern aerospace, defense and space-industry applications.
Electronic Design Automation Market to Reach $17.47 Billion by 2030, Growing at a CAGR of 10.7%
03/31/2025 | PRNewswireThe growth of the EDA market is driven by the increasing complexity of integrated circuit (IC) designs, rising adoption of connected devices, and growing demand for EDA solutions in the aerospace and defense sectors. Additionally, the increasing integration of AI and machine learning in chip design is further boosting market expansion.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
03/28/2025 | Andy Shaughnessy, I-Connect007I’ve spent my week recovering from a busy and interesting week in Anaheim for the 25th IPC APEX EXPO. I think back to my first APEX EXPO, and the changes since then are too numerous to count. I first attended in 2004, also in Anaheim, back when there was almost no design content in the conference or expo portions of the show. It was just a few years after the downturn, and attendees and exhibitors alike were skittish, almost afraid to show confidence in our industry. A few unemployed design friends handed out copies of their resumes. Travel budgets were still down, and the aisles weren’t exactly packed with traffic.
It’s Only Common Sense: 7 Tips to Focus on What Works
03/31/2025 | Dan Beaulieu -- Column: It's Only Common SenseIn business, there’s always the temptation to be all things to all people, whether it’s expanding product lines, chasing every lead, or trying to keep up with competitors. The fear of missing out can lead to spreading our time, resources, and energy too thin. However, success doesn’t come from doing everything; it comes from doing the right things well.
HARTING 3D-Circuits Leads 3D-MID Innovation: Transforming Consumer Electronics with Advanced Technology
03/27/2025 | PRNewswireThe consumer electronics industry is experiencing a remarkable transformation, propelled by rapid technological advancements and an increasing demand for compact, efficient, and multifunctional devices. Central to this evolution is 3D-MID (Three-Dimensional Mechatronic Integrated Devices) technology, which redefines design standards and drives innovation.