-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Researchers Poised for Advances With NVIDIA CUDA Quantum
November 13, 2023 | The NVIDIA BlogEstimated reading time: 4 minutes

Michael Kuehn and Davide Vodola are taking to new heights work that’s pioneering quantum computing for the world’s largest chemical company.
The BASF researchers are demonstrating how a quantum algorithm can see what no traditional simulation can — key attributes of NTA, a compound with applications that include removing toxic metals like iron from a city’s wastewater.
The quantum computing team at BASF simulated on GPUs how the equivalent of 24 qubits — the processing engines of a quantum computer — can tackle the challenge.
Many corporate R&D centers would consider that a major achievement, but they pressed on, and recently ran their first 60 qubit simulations on NVIDIA’s Eos H100 Supercomputer.
“It’s the largest simulation of a molecule using a quantum algorithm we’ve ever run,” said Kuehn.
Flexible, Friendly Software
BASF is running the simulation on NVIDIA CUDA Quantum, a platform for programming CPUs, GPUs and quantum computers, also known as QPUs.
Vodola described it as “very flexible and user friendly, letting us build up a complex quantum circuit simulation from relatively simple building blocks. Without CUDA Quantum, it would be impossible to run this simulation,” he said.
The work requires a lot of heavy lifting, too, so BASF turned to an NVIDIA DGX Cloud service that uses NVIDIA H100 Tensor Core GPUs.
“We need a lot of computing power, and the NVIDIA platform is significantly faster than CPU-based hardware for this kind of simulation,” said Kuehn.
BASF’s quantum computing initiative, which Kuehn helped launch, started in 2017. In addition to its work in chemistry, the team is developing use cases for quantum computing in machine learning as well as optimizations for logistics and scheduling.
An Expanding CUDA Quantum Community
Other research groups are also advancing science with CUDA Quantum.
At SUNY Stony Brook, researchers are pushing the boundaries of high-energy physics to simulate complex interactions of subatomic particles. Their work promises new discoveries in fundamental physics.
“CUDA Quantum enables us to do quantum simulations that would otherwise be impossible,” said Dmitri Kharzeev, a SUNY professor and scientist at Brookhaven National Lab.
In addition, a research team at Hewlett Packard Labs is using the Perlmutter supercomputer to explore magnetic phase transition in quantum chemistry in one of the largest simulations of its kind. The effort could reveal important and unknown details of physical processes too difficult to model with conventional techniques.
“As quantum computers progress toward useful applications, high-performance classical simulations will be key for prototyping novel quantum algorithms,” said Kirk Bresniker, a chief architect at Hewlett Packard Labs. “Simulating and learning from quantum data are promising avenues toward tapping quantum computing’s potential.”
A Quantum Center for Healthcare
These efforts come as support for CUDA Quantum expands worldwide.
Classiq — an Israeli startup that already has more than 400 universities using its novel approach to writing quantum programs — announced today a new research center at the Tel Aviv Sourasky Medical Center, Israel’s largest teaching hospital.
Created in collaboration with NVIDIA, it will train experts in life science to write quantum applications that could someday help doctors diagnose diseases or accelerate the discovery of new drugs.
Classiq created quantum design software that automates low-level tasks, so developers don’t need to know all the complex details of how a quantum computer works. It’s now being integrated with CUDA Quantum.
Terra Quantum, a quantum services company with headquarters in Germany and Switzerland, is developing hybrid quantum applications for life sciences, energy, chemistry and finance that will run on CUDA Quantum. And IQM in Finland is enabling its superconducting QPU to use CUDA Quantum.
Quantum Loves Grace Hopper
Several companies, including Oxford Quantum Circuits, will use NVIDIA Grace Hopper Superchips to power their hybrid quantum efforts. Based in Reading, England, Oxford Quantum is using Grace Hopper in a hybrid QPU/GPU system programmed by CUDA Quantum.
Quantum Machines announced that the Israeli National Quantum Center will be the first deployment of NVIDIA DGX Quantum, a system using Grace Hopper Superchips. Based in Tel Aviv, the center will tap DGX Quantum to power quantum computers from Quantware, ORCA Computing and more.
In addition, Grace Hopper is being put to work by qBraid, in Chicago, to build a quantum cloud service, and Fermioniq, in Amsterdam, to develop tensor-network algorithms.
The large quantity of shared memory and the memory bandwidth of Grace Hopper make these superchips an excellent fit for memory-hungry quantum simulations.
Get started programming hybrid quantum systems today with the latest release of CUDA Quantum from NGC, NVIDIA’s catalog of accelerated software, or GitHub.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Keysight Installs World’s Largest Commercial Quantum Control System at AIST’s Leading-Edge G-QuAT Center
07/30/2025 | Keysight TechnologiesKeysight Technologies, Inc. has delivered the world’s largest1 commercial quantum control system (QCS) to the National Institute of Advanced Industrial Science and Technology (AIST) in Japan.
Diraq Secures CTCP Funding to Uncover Energy Applications
07/28/2025 | DiraqDiraq has been awarded AU$500,000 in funding to explore how quantum computers can enhance the performance, sustainability and security of energy networks.
Honeywell Awarded U.S. Government Contracts to Develop Quantum Sensor-Based Navigation Systems
07/21/2025 | HoneywellHoneywell has been selected by the U.S. Department of Defense’s (DOD) Defense Innovation Unit (DIU) to participate in the Transition of Quantum Sensing (TQS) program.
EIFO, the Novo Nordisk Foundation Acquire the World's Most Powerful Quantum Computer
07/17/2025 | PRNewswireThe commercial and geopolitical stakes in quantum technology are immense, and significant technological advances have been made over the past decade.
indie’s LXM-U Laser Powers Next-Gen Quantum Technologies with Ultra-Low Noise Performance
07/14/2025 | indie Semiconductorindie, an automotive solutions innovator, is rapidly gaining industry adoption in its photonics portfolio, with indie’s latest ultra-low noise LXM-U lasers enabling next-generation quantum applications by delivering industry-leading frequency stability and integration flexibility.