-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Panasonic Meeting Market Needs with Higher-Performance Megtron 7
March 17, 2015 | Pete Starkey, I-Connect007Estimated reading time: 8 minutes
Abe: With Megtron 7 the loss is maybe 20-30% improved from the Megtron 6.
Starkey: Can I just ask, going away from the performance characteristics and the enabling characteristics, but speaking as a fabricator, does it present any problems in fabrication, or any particular special precautions needed?
Senese: Let’s address this by going through our targets for Megtron 7, which include the product characteristics, but also the kinds of things you're talking about. We know from experience that even products that have very good characteristics are unsuccessful if they don't fit into a certain window in terms of how the fabricators can use them.
Abe: Okay, our first target is of course the DF/DK properties. It's most important for us. Our goal was half of the loss of Megtron 6. That's our most important target. Then Megtron 6 is, electrically, very high end, but it also has a very good thermal and reliability performance, so Megtron 7 should be the same. So that is our second target.
Starkey: If I patiently fabricate and I have established a process procedure for building boards with Megtron 6, can I just use that established procedure for building boards on Megtron 7?
Abe: Yes, it’s very close.
Senese:One of the things that Megtron 6 has that is unique compared to previous materials that have been used in high-speed, beyond just better electrical performance, is the rheology of the system that allows material to be laminated in a way where the dielectrics are very consistent across any panel size. That means if somebody has to back drill for getting rid of stubs, they can do it very consistently with Megtron 6. A lot of the designs for the back planes and daughter cards that are being used now exploited that property because the thickness of the edge, the center, and from board-to-board was so consistent that they could easily set up to maintain a very tight back-drilling to get the stubs on any layer within 2–3 mils of the next interconnect, which is very tight.
That was something that, when Megtron 6 was designed, nobody planned on, but it has become a de facto standard. Luckily for Panasonic, other materials that look good on paper didn't always succeed in the market because that was something that had been exploited by the fabricators. So this is something that was added to our list of the things we have to do ,because we're designing this material to replace Megtron 6, and if they can't do this with this material, our own material will fail.
Starkey: Exactly.
Senese: So that's one thing that's similar with Megtron 7, the lamination cycle, the lamination thickness consistency, and the ability to exploit that, to make those designs is still there. One of the things that most of these high-end materials have in common, especially the thermally robust ones, is that drill wear is always a question. Some materials in the past have actually just failed because the drill wear went from a product like Megtron 6 where you could do a thousand hits on almost any size, down to sub-500 hit level. The drills for these materials, as you can imagine when you have a board that's almost half an inch thick, are very expensive. Another thing that happened is that people said, "Well, does it drill okay? Is it as good at least as Megtron 6?" Actually, in the wear studies that we've done with Megtron 7, it is a little better than Megtron 6.
Starkey: What sort of foils are you using or are recommended for use with the materials? What sort of bonding treatments for the foils, with signal integrity in the lines?
Page 2 of 3
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.