-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Panasonic Meeting Market Needs with Higher-Performance Megtron 7
March 17, 2015 | Pete Starkey, I-Connect007Estimated reading time: 8 minutes
Abe: With Megtron 7 the loss is maybe 20-30% improved from the Megtron 6.
Starkey: Can I just ask, going away from the performance characteristics and the enabling characteristics, but speaking as a fabricator, does it present any problems in fabrication, or any particular special precautions needed?
Senese: Let’s address this by going through our targets for Megtron 7, which include the product characteristics, but also the kinds of things you're talking about. We know from experience that even products that have very good characteristics are unsuccessful if they don't fit into a certain window in terms of how the fabricators can use them.
Abe: Okay, our first target is of course the DF/DK properties. It's most important for us. Our goal was half of the loss of Megtron 6. That's our most important target. Then Megtron 6 is, electrically, very high end, but it also has a very good thermal and reliability performance, so Megtron 7 should be the same. So that is our second target.
Starkey: If I patiently fabricate and I have established a process procedure for building boards with Megtron 6, can I just use that established procedure for building boards on Megtron 7?
Abe: Yes, it’s very close.
Senese:One of the things that Megtron 6 has that is unique compared to previous materials that have been used in high-speed, beyond just better electrical performance, is the rheology of the system that allows material to be laminated in a way where the dielectrics are very consistent across any panel size. That means if somebody has to back drill for getting rid of stubs, they can do it very consistently with Megtron 6. A lot of the designs for the back planes and daughter cards that are being used now exploited that property because the thickness of the edge, the center, and from board-to-board was so consistent that they could easily set up to maintain a very tight back-drilling to get the stubs on any layer within 2–3 mils of the next interconnect, which is very tight.
That was something that, when Megtron 6 was designed, nobody planned on, but it has become a de facto standard. Luckily for Panasonic, other materials that look good on paper didn't always succeed in the market because that was something that had been exploited by the fabricators. So this is something that was added to our list of the things we have to do ,because we're designing this material to replace Megtron 6, and if they can't do this with this material, our own material will fail.
Starkey: Exactly.
Senese: So that's one thing that's similar with Megtron 7, the lamination cycle, the lamination thickness consistency, and the ability to exploit that, to make those designs is still there. One of the things that most of these high-end materials have in common, especially the thermally robust ones, is that drill wear is always a question. Some materials in the past have actually just failed because the drill wear went from a product like Megtron 6 where you could do a thousand hits on almost any size, down to sub-500 hit level. The drills for these materials, as you can imagine when you have a board that's almost half an inch thick, are very expensive. Another thing that happened is that people said, "Well, does it drill okay? Is it as good at least as Megtron 6?" Actually, in the wear studies that we've done with Megtron 7, it is a little better than Megtron 6.
Starkey: What sort of foils are you using or are recommended for use with the materials? What sort of bonding treatments for the foils, with signal integrity in the lines?
Page 2 of 3
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.