-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAdvanced Packaging and Stackup Design
This month, our expert contributors discuss the impact of advanced packaging on stackup design—from SI and DFM challenges through the variety of material tradeoffs that designers must contend with in HDI and UHDI.
Rules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute
Avoid Overload in Gain-Phase Measurements
Today, most of our printed circuit boards have at least a few DC-DC converters, and some boards have many. We have a large choice when it comes to deciding what to use: we can design and build our own converter from discrete parts (called voltage regulator down or VRD) or we can buy one of the off-the-shelf open-frame or fully encapsulated voltage regulator modules (VRM).
For low currents we can use linear regulators; for medium and high current we are better off using a switching-mode topology. Whatever circuit suits best our needs, chances are that we want to keep the output voltage regulated against changes in input voltage and load current, which in turn calls for one or more internal control loops.
There is a well-established theory to design stable control loops, but in the case of power converters, we face a significant challenge: each application may require a different set of output capacitors coming with our loads. Since the regulation feedback loop goes through our bypass capacitors (shown as a single Cout in Fig. 1), our application-dependent set of capacitors now become part of the control feedback loop. Unfortunately, certain combination of output capacitors may cause the converter to become unstable, something we want to avoid. This raises the need to test, measure and/or simulate the control-loop stability.
To read this column, which appeared in the June 2015 issue of The PCB Design Magazine, click here.
More Columns from Quiet Power
Quiet Power: An Evolution in PCB Design CostsQuiet Power: The Effect on SI and PI Board Performance
Quiet Power: 3D Effects in Power Distribution Networks
Quiet Power: Noise Mitigation in Power Planes
Quiet Power: Uncompensated DC Drop in Power Distribution Networks
Quiet Power: Ask the Experts—PDN Filters
Quiet Power: Friends and Enemies in Power Distribution
Quiet Power: Be Aware of Default Values in Circuit Simulators