-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Panasonic Meeting Market Needs with Higher-Performance Megtron 7
March 17, 2015 | Pete Starkey, I-Connect007Estimated reading time: 8 minutes

I-Connect Technical Editor Pete Starkey sat down with Panasonic’s Tony Senese and Tomoyuki Abe at IPC APEX EXPO 2015 in San Diego–high-speed digital materials, particularly those with very low-loss characteristics, was the focus of their discussion. Also noted were the positive responses from chemical process suppliers, and the realistic length of a product development cycle.
Pete Starkey: Panasonic Megtron 6 has become established as the industry standard, but I understand there is a new product coming out of development and in the early stages of production, Megtron 7, which is the lowest-loss material that is currently available from Panasonic. Can you gentlemen give me some details of the characteristics and performance of the material, and the sort of applications of the industry sectors where this material is going to be of substantial benefit?
Tony Senese: We have a technology development roadmap that we update on a regular basis at least a couple times a year, and we have several market segments that we track our products in.
Tomoyuki Abe: Right now, Megtron 6 is the standard of the high-end server router equipment material, but the market is requesting the more high-speed material. Megtron 6 is quite good, but the market needs higher-performance material.
Starkey: To clarify, when you talk about high-speed material, what sort of data rates are you aiming at?
Senese: In the high-speed digital area right now, products are operating in the 10 Gbps to 20 Gbps range enabled by Megtron 6. However, at 20 Gbps other things have to be done to the circuit boards to make them meet the loss budget. Megtron 6 enabled the major IT infrastructure suppliers to use very similar design techniques to what they were using at lower speeds—say, 6–10 Gbs. So now, that is kind of the standard rate in that high-speed digital arena.
Starkey: So Megtron 7 effectively is an enabler that opens up the possibilities for them to develop into higher data rates?
Senese: That’s right. Basically, at the 25 Gbps data range, which is actually already in place, Megtron 7 removes a few roadblocks that make the fabrication difficult. At the 25 Gbps data range, especially on the large format back planes, and some of the line cards, the loss budget is too close to the mark, even with Megtron 6. It is a goal of all of these infrastructure companies to increase the amount of data they can transmit because of things like streaming video that have started to become ubiquitous, so they need to have their core routers to be much faster.
So 25 Gbps is where they're designing right now, and there are people who are designing certain pieces of equipment at the 50 Gbps range. So that meansthat really Megtron 6 isn't enough to build those core routers, as is.
There are connectors being developed that are fast enough and can be used that are early in production, and the people that are building what I would call proof-of-concept hardware are really just too close to the edge. They can build it once, but they can't build it in high volume, or even in normal quantities. But when it comes to loss, there is quite the difference from Megtron 6.
Page 1 of 3
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/18/2025 | Nolan Johnson, I-Connect007It may be the middle of the summer, but the news doesn’t quit, and there’s plenty to talk about this week, whether you’re talking technical or on a global scale. When I have to choose six items instead of my regular five, you know it’s good. I start by highlighting my interview with Martyn Gaudion on his latest book, share some concerning tariff news, follow that up with some promising (and not-so-promising) investments, and feature a paper from last January’s inaugural Pan-European Design Conference.
Elephantech Launches World’s Smallest-Class Copper Nanofiller
07/17/2025 | ElephantechJapanese deep-tech startup Elephantech has launched its cutting-edge 15 nm class copper nanofiller – the smallest class available globally. This breakthrough makes Elephantech one of the first companies in the world to provide such advanced material for commercial use.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.