-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Designers Notebook: Embedding Components, Part 7—Semiconductor Placement and Termination Methodologies
Progress in developing high-density embedded-component substrate capability has accelerated through the cooperation and joint development programs between many government and industry organizations and technical universities. In addition to these joint development programs, several independent laboratories and package assembly service providers have developed a number of proprietary processes for embedding the uncased semiconductor elements.
Developers have found that embedding the semiconductors on an inner layer of the PCB or package substrate directly in line with active and passive components mounted on the outer surface ensures that the conductor interface between related components will be minimized.
There are a number of methods used for interconnecting uncased semiconductor components. Semiconductor elements can be mounted onto the core substrate in the faceup orientation or facedown. When placing the die with the active surface of the die facing up, termination will likely adopt copper-plated microvia methodology. Meanwhile, facedown placement will enable the direct interface to land patterns provided on the designated layer of the circuit structure
As noted in Part 6 of this series, the semiconductor fabrication process initially furnishes the die with aluminum bond pads on its perimeter for the traditional wire-bond interface process.
Faceup Semiconductor Termination
Both gold wire-bond and ribbon-bond processes may be applied for completing the die-to-substrate interface. In preparation for this process, a cavity is provided in the substrate (typical of that described in Part 4) to provide clearance for both the die attach and terminal interface. The faceup attachment method traditionally adopts an adhesive material (liquid epoxy or film) for initially attaching the die to the substrate’s surface. Termination lands are positioned on the upper layer of the cavity in line with the wire-bond termination sites on the die element.
To read this entire column, which appeared in the January issue of Design007 Magazine, click here.
More Columns from Designer's Notebook
Designers Notebook: Layer Stackup Planning for RF Circuit BoardsDesigners Notebook: Addressing Future Challenges for Designers
Designers Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
Designers Notebook: Implementing HDI and UHDI Circuit Board Technology
Designer's Notebook: Heterogeneous Integration and High-density SiP Technologies
Designers Notebook: PCB Design and IPC-CFX for Assembly Automation
Designer’s Notebook: What Designers Need to Know About Manufacturing, Part 2
Designers Notebook: What Designers Need to Know About Manufacturing, Part 1