-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueTraining New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
Advanced Packaging and Stackup Design
This month, our expert contributors discuss the impact of advanced packaging on stackup design—from SI and DFM challenges through the variety of material tradeoffs that designers must contend with in HDI and UHDI.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Designers Notebook: Embedding Components, Part 7—Semiconductor Placement and Termination Methodologies
Progress in developing high-density embedded-component substrate capability has accelerated through the cooperation and joint development programs between many government and industry organizations and technical universities. In addition to these joint development programs, several independent laboratories and package assembly service providers have developed a number of proprietary processes for embedding the uncased semiconductor elements.
Developers have found that embedding the semiconductors on an inner layer of the PCB or package substrate directly in line with active and passive components mounted on the outer surface ensures that the conductor interface between related components will be minimized.
There are a number of methods used for interconnecting uncased semiconductor components. Semiconductor elements can be mounted onto the core substrate in the faceup orientation or facedown. When placing the die with the active surface of the die facing up, termination will likely adopt copper-plated microvia methodology. Meanwhile, facedown placement will enable the direct interface to land patterns provided on the designated layer of the circuit structure
As noted in Part 6 of this series, the semiconductor fabrication process initially furnishes the die with aluminum bond pads on its perimeter for the traditional wire-bond interface process.
Faceup Semiconductor Termination
Both gold wire-bond and ribbon-bond processes may be applied for completing the die-to-substrate interface. In preparation for this process, a cavity is provided in the substrate (typical of that described in Part 4) to provide clearance for both the die attach and terminal interface. The faceup attachment method traditionally adopts an adhesive material (liquid epoxy or film) for initially attaching the die to the substrate’s surface. Termination lands are positioned on the upper layer of the cavity in line with the wire-bond termination sites on the die element.
To read this entire column, which appeared in the January issue of Design007 Magazine, click here.
More Columns from Designer's Notebook
Designers Notebook: Addressing Future Challenges for DesignersDesigners Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
Designers Notebook: Implementing HDI and UHDI Circuit Board Technology
Designer's Notebook: Heterogeneous Integration and High-density SiP Technologies
Designers Notebook: PCB Design and IPC-CFX for Assembly Automation
Designer’s Notebook: What Designers Need to Know About Manufacturing, Part 2
Designers Notebook: What Designers Need to Know About Manufacturing, Part 1
Designer’s Notebook: DFM Principles for Flexible Circuits