-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Designers Notebook: Design Challenges for Developing High-density 2.5D Interposers, Part 2
Author’s Note: Read Part 1 here.
2.5D Interposer Design
A typical 2.5D substrate application supports the interfacing of one or more high-density semiconductors. While the upper surface will accommodate a majority of semiconductor redistribution and/or die-to-die interface for multiple die applications, the primary I/O channels and power and ground terminals are transferred to the bottom surface of the interposer through plated or filled microvias for routing to an array pattern of terminals designated to interface with the intermediate package substrate or host PCB structure requiring significantly lower circuit density. Although the overall circuit density of the 2.5D interposer is significantly greater than the mainstream HDI circuit board, the commercial CAD tools already available for PCB circuit routing should accommodate most interposer development activity.
In preparation for developing the interposer, designers are advised to prepare a description of the proposed substrate, detailing the semiconductor element(s) physical parameters, intended use environment, and timeline anticipated for development. The 2.5D substrate fabricator can then recommend a suitable base material (organic, silicon or glass) and define the fabricator’s via forming methodologies, metalization process capabilities, and circuit geometry limitations.
Base Materials
The primary base materials utilized for the 2.5D interposer applications include glass-reinforced organic laminates, silicon (wafers or panels), and ruggedized glass panels.
To read this entire column, which appeared in the November 2019 issue of Design007 Magazine, click here.
More Columns from Designer's Notebook
Designers Notebook: Addressing Future Challenges for DesignersDesigners Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
Designers Notebook: Implementing HDI and UHDI Circuit Board Technology
Designer's Notebook: Heterogeneous Integration and High-density SiP Technologies
Designers Notebook: PCB Design and IPC-CFX for Assembly Automation
Designer’s Notebook: What Designers Need to Know About Manufacturing, Part 2
Designers Notebook: What Designers Need to Know About Manufacturing, Part 1
Designer’s Notebook: DFM Principles for Flexible Circuits