-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRigid-flex: Designing in 3D
In this month’s issue, our expert contributors share their best tips, tricks and techniques for designing rigid-flex circuits. If you’re a rigid board designer considering moving into the 3D world of rigid-flex, this issue is just what the doctor ordered!
Simulation, Analysis, and AI
Getting today’s designs “right the first time” is critical, especially with costly advanced PCBs. Simulation and analysis software tools can help you in the fight to eliminate respins. They’re not magical, but they can predict the future of your design.
Advanced, Complex & Emerging Designs
This month, our contributors focus on designing PCBs with advanced, complex and emerging technologies. We investigate design strategies for boards that are on the cutting edge of technology, or crazily complex, or so new that designers are still writing the rules as they go.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
Estimated reading time: 2 minutes

Chilling Out with Conductive Adhesives
Conductive adhesives have been around for many years. Some are electrically conductive, others are thermally conductive, and some have both properties. Additionally, the conductive adhesives can be a pressure-sensitive adhesive (PSA) or a thermoset adhesive. To narrow the scope of this month’s column, only thermoset thermally and electrically conductive adhesive (TECA) will be discussed.
TECA is often used for heat sink attachment of PCB assemblies when thermal management is a concern. In the RF industry, power amplifiers often generate a lot of heat, and the PCB supporting the power amp is generally attached to a large metal heat sink. The attachment between the PCB and the heat sink is usually done by mechanical attachment with screws, sweat soldering or TECA. Each attachment method has its own set of capabilities and limits.
The mechanical attachment may have air gaps between the circuit and the heat sink, and if these are in critical areas they can make a less efficient heat flow path from the PCB to the heat sink. A less efficient heat flow path can cause the PCB assembly to have a higher temperature than desired and sweat soldering can have similar issues due to voiding. Air gaps are not an issue with TECA when parts are properly bonded using vendor supplied parameters. The drawback to TECA, compared to the other two technologies, is that TECA is usually not as thermally conductive as a metal-to-metal contact. And for RF applications, the heat sink is often used as the system ground and the electrical connection between the PCB, so the heat sink has to be very good for most RF applications.
The obvious critical material properties for TECA are thermal conductivity and electrical conductivity, but there are other concerns. As general statements, a TECA material with thermal conductivity of 3 W/m·K or more is considered good, and electrical conductivity with a volume resistance value of 0.0005 ohm·cm or less is considered good. Regarding other properties, TECA with good bond strength to different metals and robustness to lead-free solder reflow may be important.
Having TECA bond well to different metals is beneficial for bonding to heat sinks made with different metals and/or the different final plated finishes on a PCB, which will be bonded to the heat sink with the TECA. There have been TECA materials in the PCB industry which were not robust with lead-free soldering; they were still useful for heat sink attachment, but had special processing considerations.
Read the full column here.
Editor's Note: This article originally appeared in the October 2014 issue of The PCB Design Magazine.
More Columns from Lightning Speed Laminates
Lightning Speed Laminates: Millimeter-wave Properties and PCB Design ChallengesLightning Speed Laminates: Optimizing Thermal Management for Wireless Communication Systems
Lightning Speed Laminates: Test Vehicles for PCB Electrical Material Characterization
Lightning Speed Laminates: Optimum Thermal Stability Considerations
Lightning Speed Laminates: Thermal Management Isn’t Getting Easier
Lightning Speed Laminates: Benefits of High-Performance Hybrid Multilayer PCBs
Lightning Speed Laminates: An Overview of Copper Foils
Lightning Speed Laminates: The Importance of Circuit Features for Millimeter-Wave Applications