-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueDo You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
Technical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Estimated reading time: 5 minutes

Contact Columnist Form
Standing Room Only at ICT's Winsford, UK Seminar
In cooperation with Merlin Circuit Technology, deep eutectic solvent formulations had been evaluated as hot-air solder levelling fluxes with remarkable success. Copper was wetted more rapidly than with proprietary HASL fluxes and complete coverage was achieved in a single dip. One very interesting outcome was the ability to solder-level with lead-free solder on PCBs with electroless nickel finish, not previously achievable with conventional fluxes, and this opened up the prospect of a novel solderable finish dubbed Hot Air Solder Levelling on Electroless Nickel (HASLEN).
ICT Chairman Professor Martin Goosey gave the third presentation, entitled Recovery of Copper from PCB Manufacturing Processes using Crab Shells, describing the TSB-funded STOWURC project whose objective was to develop sustainable materials and processes using waste products from the seafood industry to treat effluent and recover metals from PCB manufacture.
The whole supply chain, from raw material to dissemination of information, was represented in the project consortium. It had been observed that a natural component of the shells of crustaceans, chitin, was able to adsorb heavy metals from dilute solution, and that a simple chemical modification of chitin, by alkaline deacetylation to form chitosan, significantly improved the efficiency of adsorption. For example, one gram of chitosan was capable of adsorbing 250 milligrams of copper.
Professor Goosey summarised the results of initial experiments. The effects on adsorption rates of parameters such as temperature, pH, initial concentration, rate of mixing, specific metal ions had been studied, over a range of chitosan parameters including the amount of adsorbant, the degree of deacetylation and the particle size. It was possible to reduce copper concentration in effluent to the 0.1 ppm level.
Having captured the metal, it was possible to desorb it with sulphuric acid and recover it by straightforward electroplating. A key issue was the residual adsorption efficiency of the chitosan after stripping of copper; there was a tendency for absorption ability to decrease with each cycle, and conditions were being optimised to minimise the effect.
Chitosan had the ability to adsorb a wide range of metals found in PCB effluent, nickel for example, and there were many applications in the general metal finishing industry. It also provided the opportunity to recover endangered or rare metals from low concentration solutions. Professor Goosey mentioned platinum, palladium, rhodium, osmium, iridium, mercury, and gold as examples, but made it clear that each metal would need an optimised combination of process parameters and conditions.
Page 2 of 3
More Columns from The European Angle
CircuitData: A New Open Standard for PCB Fab Data ExchangeI Never Realised It Was So Complicated!
The European Angle: Institute of Circuit Technology 43rd Annual Symposium
Ventec International Group's Martin Cotton Celebrates 50 Years in PCB Design
Reporting on the Institute of Circuit Technology Spring Seminar
EuroTech: Raw Materials Supply Chain—Critical Challenges Facing the PCB Industry
EuroTech: ENIPIG—Next Generation of PCB Surface Finish
EuroTech: Institute of Circuit Technology Northern Seminar 2016, Harrogate